Selection and key technologies of low-carbon steelmaking processes under the background of “Double Carbon”
-
摘要: “碳達峰”、“碳中和”是一個總體的宏觀概念,為中國未來經濟與環境發展提供了籠統的理論框架與基本理念。基于“雙碳”目標的深度解析,中國鋼鐵行業處于“碳鎖定”狀態,只有同時進行技術和制度變革才能實現“碳解鎖”。結合當前鋼鐵工業生產結構、冶煉原材料供應、冶煉能源、節能減排水平以及CO2排放現狀,給出了合理的碳達峰時間及峰值。未來二三十年中國鋼鐵生產主要流程依然是長流程和短流程并存,氫冶金技術還難以進行工業生產,提升全廢鋼短流程煉鋼的比例是降低碳排放的主要措施。從長遠來看,長流程中煉鐵工藝由碳還原逐漸向氫還原是大勢所趨,煉鐵工序的產品將由原來的高碳鐵水轉變為低碳鐵水或直接還原鐵(DRI),具有較高脫碳的轉爐煉鋼就沒有明顯優勢,發展電弧爐煉鋼流程是必然選擇。但實現“碳中和”還要依靠氫冶金,碳捕集、利用與封存技術的發展和應用,以及制度的變革。基于近年在全廢鋼電弧爐相關方面的理論研究、裝備開發與實踐的深入研究,針對全廢鋼電弧爐冶煉工藝存在的問題,開發了一系列關鍵技術,實現在全廢鋼條件下滿足當前連鑄生產工藝節奏以及鋼液質量的控制,為全廢鋼電弧爐的發展提供理論支持。Abstract: “Carbon peaking” and “carbon neutralization” are macro concepts that provide a general theoretical framework and basic ideas for China’s future economic and environmental development. Based on the in-depth analysis of the “double carbon” goal, China’s iron and steel industry is in a “carbon lock” state. Only by carrying out technological and institutional changes simultaneously can the “carbon unlock” be realized. The reasonable carbon peak time and peak value are given when the current production structure of the iron and steel industry, supply of smelting raw materials, smelting energy, energy conservation, emission reduction level, and CO2 emission status are combined. In the next two or three decades, the main process of China’s iron and steel production is still the coexistence of long process and short process. Hydrogen metallurgy technology is still difficult to carry out in industrial production. The main measure to reduce carbon emissions is to increase the proportion of all scrap short process steelmaking. In the long run, it is generally accepted that the ironmaking process in the long term will gradually change from carbon reduction to hydrogen reduction. For the ironmaking process, the products will change from the original high-carbon molten iron to low-carbon molten iron or DRI. Converter steelmaking with high decarburization has no obvious advantages, and the development of the EAF steelmaking process is an inevitable choice. However, the realization of “carbon neutralization” depends on the development and application of hydrogen metallurgy, carbon capture, utilization, and storage technology, and the reform of the system. Based on an in-depth study of the theoretical research, equipment development, and practice of all scrap electric arc furnaces in recent years, aiming at the problems existing in the smelting process of all scrap electric arc furnaces, a series of key technologies have been developed to meet the current continuous casting production process rhythm and liquid steel quality control under the condition of all scrap, to provide theoretical support for the development of all scrap electric arc furnace.
-
表 1 國際部分長流程企業噸鋼CO2排放數據
Table 1. CO2 emission data per ton of steel for some international long-process enterprises
Year CO2 emission data per ton of steel/t Nippon
SteelJFE POSCO NLMK Severstal Arcelor-
MittalTata
SteelChina
Steel2016 1.99 2.02 1.88 1.91 1.99 2.14 2.30 — 2017 2.01 2.06 1.90 1.90 1.91 1.12 2.29 1.89 2018 2.02 2.04 1.92 1.91 2.10 2.12 2.30 1.63 Principle Method Process advantage Process disadvantages Physical method Adsorption method Simple process and low energy consumption High consumption of adsorbent, frequent desorption,
and a high degree of automationMembrane separation Simple operation, low pollution,
high extraction efficiencyThe membrane is susceptible to chemical damage,
and there must be a pressure difference before
and after the separation membraneCryogenic distillation The process is simple, the removal efficiency
is high, and it is easy to realizeLarge equipment, high energy consumption,
the poor separation effectSolvent adsorption method The process is simple, the operation is reliable,
and the solvent is cheap and easy to getHigh equipment investment, high operating cost,
and environmental pollutionChemical method Ammonia washing method With high removal efficiency,
the adsorbent can be recycledThe equipment is corrosive, and the adsorbent
recovery requires energyAmine method With high removal efficiency,
the adsorbent can be recycledLow load capacity, the high corrosion rate of the
equipment, easy degradation of aminesElectrochemical method High removal efficiency and low removal cost Electrolyte preparation is difficult, equipment is prone
to corrosion, and the battery is prone to poisoningCyclic combustion method Simple process and low energy consumption The scope of application is limited, suitable for only
CO2 and H2O in the exhaust gas表 3 熔化各階段限制性環節及優化措施
Table 3. Restrictive links and optimization measures at each stage of melting
Melting stage Heat transfer equation Heat flux relationship Limiting factor Optimization measures Initial stage steel Q=h·ΔT Qs-lo>Qlo>Ql Form a steel shell; Increase scrap preheating temperature; air gap reduces heat transfer coefficient; form "iceberg”, reduce the specific surface area optimize feeding method Main melting period Qs-hi<Qhi<Ql Reduce temperature gradient Integrated mixing technology to
improve heat transfer coefficientHeat penetration fast melting Qs-hi=Qhi<Ql Further, reduce the temperature gradient Increase heating rate, increase the
temperature gradientDephosphorization method Steel slag sample CaO mass fraction/% P2O5 mass fraction/% SiO2 mass fraction/% T.Fe mass fraction/% MgO mass fraction/% Traditional dephosphorization Slag particles 1 38.8 2.8 11.4 28.2 3.9 Slag particles 2 41.6 3.7 12.9 26.7 5.4 Efficient dephosphorization Slag particles 1 60.4 17.3 14.8 0.9 0.4 Slag particles 2 66.3 10.4 14.7 0.9 0.3 www.77susu.com -
參考文獻
[1] Zhang Y X, Luo H L, Wang C. Progress and trends of global carbon neutrality pledges. Clim Change Res, 2021, 17(1): 88張雅欣, 羅薈霖, 王燦. 碳中和行動的國際趨勢分析. 氣候變化研究進展, 2021, 17(1):88 [2] Li X C, Li B, Huo D M, et al. Concerns on drafting carbon emission standard for improvement of China’s iron and steel industry with sustainable development. China Metall, 2021, 31(6): 1李新創, 李冰, 霍咚梅, 等. 推進中國鋼鐵行業低碳發展的碳排放標準思考. 中國冶金, 2021, 31(6):1 [3] Liu X L, Cui L L, Li B, et al. Research on the high-quality development path of China’s energy industry under the target of carbon neutralization. J Beijing Inst Technol Soc Sci Ed, 2021, 23(3): 1劉曉龍, 崔磊磊, 李彬, 等. 碳中和目標下中國能源高質量發展路徑研究. 北京理工大學學報(社會科學版), 2021, 23(3):1 [4] Ma J T, Huang G T. Research on complete energy consumption in China’s steel industry. Price Theory Pract, 2018(4): 17馬驥濤, 黃桂田. 中國鋼鐵行業完全能源消耗研究. 價格理論與實踐, 2018(4):17 [5] Zhang Q, Shen J L, Xu L S. Carbon peak and low-carbon transition path of China’s iron and steel industry. Iron Steel, 2021, 56(10): 152張琦, 沈佳林, 許立松. 中國鋼鐵工業碳達峰及低碳轉型路徑. 鋼鐵, 2021, 56(10):152 [6] Zhang J L, Liu Z J, Jiao K X, et al. Progress of new technologies and fundamental theory about ironmaking. Chin J Eng, 2021, 43(12): 1630張建良, 劉征建, 焦克新, 等. 煉鐵新技術及基礎理論研究進展. 工程科學學報, 2021, 43(12):1630 [7] Shangguan F Q, Liu Z D, Yin R Y. Study on implementation path of “carbon peak” and “carbon neutrality” in steel industry in China. China Metall, 2021, 31(9): 15上官方欽, 劉正東, 殷瑞鈺. 鋼鐵行業“碳達峰”“碳中和”實施路徑研究. 中國冶金, 2021, 31(9):15 [8] Zhang C X, Wang H F, Zhang S R, et al. Strategic study on green development of Chinese steel industry. Iron Steel, 2015, 50(10): 1張春霞, 王海風, 張壽榮, 等. 中國鋼鐵工業綠色發展工程科技戰略及對策. 鋼鐵, 2015, 50(10):1 [9] Wang H F, Li X P, Zhou J C, et al. Status and development trend of energy saving technology of Chinese steel industry. Energy Metall Ind, 2018, 37(4): 3 doi: 10.3969/j.issn.1001-1617.2018.04.001王海風, 酈秀萍, 周繼程, 等. 鋼鐵工業節能技術發展現狀及趨勢. 冶金能源, 2018, 37(4):3 doi: 10.3969/j.issn.1001-1617.2018.04.001 [10] Yin R Y. Theory and method of metallurgical process integration. Beijing: Metallurgical Industry Press, 2013殷瑞鈺. 冶金流程集成理論與方法. 北京: 冶金工業出版社, 2013 [11] Zhang L Q, Chen J. Discussion on achieving “carbon peak” and suggestions for reducing carbon in iron and steel industry. China Metall, 2021, 31(9): 21張龍強, 陳劍. 鋼鐵工業實現“碳達峰”探討及減碳建議. 中國冶金, 2021, 31(9):21 [12] Zhang Q, Xu J, Wang Y J, et al. Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows. Appl Energy, 2018, 209: 251 doi: 10.1016/j.apenergy.2017.10.084 [13] Wang P, Li W, Kara S. Cradle-to-cradle modeling of the future steel flow in China. Resour Conserv Recycl, 2017, 117: 45 doi: 10.1016/j.resconrec.2015.07.009 [14] den Elzen M, Fekete H, Höhne N, et al. Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030? Energy Policy, 2016, 89: 224 [15] Energy Statistics Department, National Bureau of Statistics. China Energy Statistics Yearbook 2018. Beijing: China Statistics Press, 2019國家統計局能源統計司. 中國能源統計年鑒2018. 北京: 中國統計出版社, 2019 [16] Shangguan F Q, Zhou J C, Wang H F, et al. Climate change and decarbonization development of steel industry. Iron Steel, 2021, 56(5): 1上官方欽, 周繼程, 王海風, 等. 氣候變化與鋼鐵工業脫碳化發展. 鋼鐵, 2021, 56(5):1 [17] Unruh G C. Understanding carbon lock-in. Energy Policy, 2000, 28(12): 817 doi: 10.1016/S0301-4215(00)00070-7 [18] Unruh G C. Escaping carbon lock-in. Energy Policy, 2002, 30(4): 317 doi: 10.1016/S0301-4215(01)00098-2 [19] Zhang S Y. Research on carbon neutralization path based on green premium hypothesis. Petroleum Petrochem Today, 2021, 29(7): 44 doi: 10.3969/j.issn.1009-6809.2021.07.008張松巖. 基于綠色溢價假設的碳中和路徑研究. 當代石油石化, 2021, 29(7):44 doi: 10.3969/j.issn.1009-6809.2021.07.008 [20] Shan Y L, Huang Q, Guan D B, et al. China CO2 emission accounts 2016—2017. Sci Data, 2020, 7: 54 doi: 10.1038/s41597-020-0393-y [21] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1 [22] Zhang Q, Zhang W, Wang Y J, et al. Potential of energy saving and emission reduction and energy efficiency improvement of China's steel industry. Iron Steel, 2019, 54(2): 7張琦, 張薇, 王玉潔, 等. 中國鋼鐵工業節能減排潛力及能效提升途徑. 鋼鐵, 2019, 54(2):7 [23] Wang X D, Hao L Y. Analysis of modern ironmaking technology and low-carbon development direction. China Metall, 2021, 31(5): 1王新東, 郝良元. 現代煉鐵工藝及低碳發展方向分析. 中國冶金, 2021, 31(5):1 [24] Anonymous. Siemens, midrex to build largest single-module direct reduction plant. Eng Min J, 2013, 214(9): 105 [25] Wang Z, Chu M S, Li Z, et al. Fundamental study on application of gas-based shaft furnace direct reduction process to high efficiency and clean utilization of paigeite. Adv Mater Res, 2011, 233-235: 753 doi: 10.4028/www.scientific.net/AMR.233-235.753 [26] Li F, Chu M S, Tang J, et al. Environmental performance analysis of coal gasification—shaft furnace—electric furnace process and BF—BOF process based on life cycle assessment. J Iron Steel Res, 2020, 32(7): 577李峰, 儲滿生, 唐玨, 等. 基于LCA的煤制氣—氣基豎爐—電爐短流程和高爐—轉爐流程環境影響分析. 鋼鐵研究學報, 2020, 32(7):577 [27] Poimenidis I A, Tsanakas M D, Papakosta N, et al. Enhanced hydrogen production through alkaline electrolysis using laser-nanostructured nickel electrodes. Int J Hydrog Energy, 2021, 46(75): 37162 doi: 10.1016/j.ijhydene.2021.09.010 [28] Hasan M M F, First E L, Boukouvala F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput Chem Eng, 2015, 81: 2 doi: 10.1016/j.compchemeng.2015.04.034 [29] Mao Y L, Qu Y L, Li B, et al. Development and application potential analysis of carbon dioxide capture technology from flue gas in steel works. Iron Steel, 2016, 51(8): 6毛艷麗, 曲余玲, 李博, 等. 鋼廠煙氣CO2捕捉技術的開發及其應用前景分析. 鋼鐵, 2016, 51(8):6 [30] Saima H, Mogi Y, Haraoka T. Development of PSA technology for the separation of carbon dioxide from blast furnace gas. JFE Tech Rep, 2014, 19: 133 [31] Zhang F Y. Design and Analysis of Reheating Furnace Flue Gas Carbon Capture System Based on the Sensible Heat of Continuous Casting Slabs [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2018張峰源. 基于品種鋼連鑄坯顯熱的加熱爐尾氣碳捕集系統設計與分析[學位論文]. 上海: 上海交通大學, 2018 [32] Park J H, Yang J, Kim D, et al. Review of recent technologies for transforming carbon dioxide to carbon materials. Chem Eng J, 2022, 427: 130980 doi: 10.1016/j.cej.2021.130980 [33] Wang X L, Sanna A, Maroto-Valer M M, et al. Carbon dioxide capture and storage by pH swing mineralization using recyclable ammonium salts and flue gas mixtures. Greenh Gases Sci Technol, 2015, 5(4): 389 doi: 10.1002/ghg.1494 [34] Xu X Z, Gu X G, Wang Z Y, et al. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew Sustain Energy Rev, 2019, 110: 65 doi: 10.1016/j.rser.2019.04.050 [35] Ma C W, Li Z, Feng W H, et al. Effect of the steelmaking benefit taken by the scrap price and scrap rate. China Metall, 2015, 25(9): 6馬春武, 李智, 封偉華, 等. 廢鋼價格與廢鋼比對煉鋼經濟效益的影響. 中國冶金, 2015, 25(9):6 [36] Na H M, Gao C K, Tian M Y, et al. MFA-based analysis of CO2 emissions from typical industry in urban—As a case of steel industry. Ecol Model, 2017, 365: 45 doi: 10.1016/j.ecolmodel.2017.09.023 [37] Yao C L, Zhu H C, Jiang Z H, et al. CO2 emissions calculation and analysis of electric arc furnace with continuous feeding of only scrap. J Mater Metall, 2020, 19(4): 259姚聰林, 朱紅春, 姜周華, 等. 全廢鋼連續加料電弧爐短流程碳排放計算及分析. 材料與冶金學報, 2020, 19(4):259 [38] Liu H Q, Fu J X, Liu S Y, et al. Calculation methods and application of carbon dioxide emission during steel-making process. Iron Steel, 2016, 51(4): 74劉宏強, 付建勛, 劉思雨, 等. 鋼鐵生產過程二氧化碳排放計算方法與實踐. 鋼鐵, 2016, 51(4):74 [39] Zang Y, Liu W G, Zhang J G. Accelerating the utilization of scrap to promote energy-saving and emission-reduction of China’s iron and steel industry. Res Iron Steel, 2010, 38(4): 43臧悅, 劉維廣, 張建國. 加快廢鋼利用促進鋼鐵工業節能減排. 鋼鐵研究, 2010, 38(4):43 [40] Huang L. Comparative analysis on environmental impact of long process and short process production mode of iron and steel. Environ Prot Circular Economy, 2016, 36(4): 31 doi: 10.3969/j.issn.1674-1021.2016.04.011黃亮. 鋼鐵長流程和短流程生產模式環境影響對比分析. 環境保護與循環經濟, 2016, 36(4):31 doi: 10.3969/j.issn.1674-1021.2016.04.011 [41] Shangguan F Q, Yin R Y, Li Y, et al. Dissussion on strategic significance of developing full scrap EAF process in China. Iron Steel, 2021, 56(8): 86上官方欽, 殷瑞鈺, 李煜, 等. 論中國發展全廢鋼電爐流程的戰略意義. 鋼鐵, 2021, 56(8):86 [42] Bai M. 70 years of development achievements of New China's power industry. Price Theory Pract, 2019(5): 4白玫. 新中國電力工業70年發展成就. 價格理論與實踐, 2019(5):4 [43] Li J H, Provatas N, Brooks G. Kinetics of scrap melting in liquid steel. Metall Mater Trans B, 2005, 36(2): 293 doi: 10.1007/s11663-005-0031-2 [44] LI J H. Kinetics of Steel Scrap Melting in Liquid Steel Bath in an Electric Arc Furnace [Dissertation]. Hamilton: McMaster University, 2007 [45] Wright J K. Steel dissolution in quiescent and gas stirred Fe/C melts. Metall Mater Trans B, 1989, 20(3): 363 doi: 10.1007/BF02696988 [46] Specht E, Jeschar R. Kinetics of steel melting in carbon-steel alloys. Steel Res, 1993, 64(1): 28 doi: 10.1002/srin.199300978 [47] Wei G S, Zhu R, Tang T P, et al. Study on the melting characteristics of steel scrap in molten steel. Ironmak Steelmak, 2019, 46(7): 609 doi: 10.1080/03019233.2019.1609738 [48] Duan W P, Yang S F, Li J S, et al. Development of rapid melting technology for steel scrap in modern electric arc furnace of China. China Metall, 2021, 31(9): 78段衛平, 楊樹峰, 李京社, 等. 中國現代電弧爐煉鋼廢鋼快速熔化技術進展. 中國冶金, 2021, 31(9):78 [49] Xi X J, Yang S F, Li J S, et al. Thermal simulation experiments on scrap melting in liquid steel. Ironmak Steelmak, 2020, 47(4): 442 doi: 10.1080/03019233.2018.1540522 [50] Jiao Q, Themelis N J. Mathematical modelling of heat transfer during the melting of solid particles in a liquid slag or metal bath. Can Metall Q, 1993, 32(1): 75 doi: 10.1179/cmq.1993.32.1.75 [51] Toulouecski Y N, Zinurov I Y. Fuel Arc Furnace (FAF) for Effective Scrap Melting. Singapore: Springer Briefs in Applied Sciences and Technology, 2017 [52] Steinparzer T, Haider M, Zauner F, et al. Electric arc furnace off-gas heat recovery and experience with a testing plant. Steel Res Int, 2014, 85(4): 519 doi: 10.1002/srin.201300228 [53] Xu Y T, Li J, Fu J, et al. Thermal characteristics of scrap preheating in finger shaft furnace. Iron Steel, 2005, 40(12): 31 doi: 10.3321/j.issn:0449-749X.2005.12.008徐迎鐵, 李晶, 傅杰, 等. 煙道豎爐電弧爐廢鋼預熱特性研究. 鋼鐵, 2005, 40(12):31 doi: 10.3321/j.issn:0449-749X.2005.12.008 [54] Shi W Z, Yang N C, Huang Q M, et al. Development of scrap preheating technology on EAF. Ind Heat, 2019, 48(6): 26 doi: 10.3969/j.issn.1002-1639.2019.06.009施維枝, 楊寧川, 黃其明, 等. 電弧爐廢鋼預熱技術發展. 工業加熱, 2019, 48(6):26 doi: 10.3969/j.issn.1002-1639.2019.06.009 [55] Wang X J, Weng T X. Development of ECOARC furnace in China from the concept of arc steelmaking. China Steel, 2018(3): 8 doi: 10.3969/j.issn.1672-5115.2018.03.004王新江, 翁泰祥. 從電弧煉鋼概念看中國發展ECOARC電爐. 中國鋼鐵業, 2018(3):8 doi: 10.3969/j.issn.1672-5115.2018.03.004 [56] Fleischanderl A, Dorndorf M, Zauner F, et al. New benchmark for energy efficient EAF steelmaking—Quantum and heat recovery. Ironmak Steelmak, 2011, 38(7): 494 doi: 10.1179/030192311X13135947813933 [57] Memoli F, Giavani C, Grasselli A. Consteel EAF and conventional EAF: A comparison in maintenance practices. La Metallurgia Italiana, 2010, 102(7): 9 [58] Zhu R, Wei G S. Study on the composite blowing stirring intensity in EAF steelmaking process // Proceedings of National Steelmaking Conference. Changsha, 2016: 7朱榮, 魏光升. 電弧爐煉鋼復合吹煉攪拌強度的研究//全國煉鋼學術會議論文集. 長沙, 2016:7 [59] He C L, Zhu R, Dong K, et al. Modeling of an impinging oxygen jet on molten bath surface in 150 t EAF. J Iron Steel Res Int, 2011, 18(9): 13 doi: 10.1016/S1006-706X(12)60028-4 [60] Liu F H, Zhu R, Dong K, et al. Simulation and application of bottom-blowing in electrical arc furnace steelmaking process. ISIJ Int, 2015, 55(11): 2365 doi: 10.2355/isijinternational.ISIJINT-2015-352 [61] Wei G S, Zhu R, Tian B H, et al. Impact characteristics of submerged gas-solid injection in the manufacturing process of steel. Chin J Eng, 2020, 42(Suppl 1): 47魏光升, 朱榮, 田博涵, 等. 金屬熔池埋入式氣-固噴吹沖擊的特征規律. 工程科學學報, 2020, 42(增刊1): 47 [62] Tsutomu N, Shuji T, Osamu H, et al. Mechanism of hot metal dephosphorization by injecting lime base fluxes with oxygen into bottom blown converter. Trans Iron Steel Inst Jpn, 1983, 23(6): 513 doi: 10.2355/isijinternational1966.23.513 [63] Koin I, Kazuo A, Hiroshi S. Kinetic study on nitrogen absorption and desorption of molten iron. Trans Iron Steel Inst Jpn, 1988, 28(1): 41 doi: 10.2355/isijinternational1966.28.41 [64] Zhang B Y, Tian B H, Wei G S. New process of nitrogen content change and control technology in EAF steelmaking process. Ind Heat, 2020, 49(6): 19 doi: 10.3969/j.issn.1002-1639.2020.06.005張伯影, 田博涵, 魏光升. 電弧爐煉鋼流程氮含量變化及控制技術新進展. 工業加熱, 2020, 49(6):19 doi: 10.3969/j.issn.1002-1639.2020.06.005 [65] Goldstein D A, Fruehan R J. Mathematical model for nitrogen control in oxygen steelmaking. Metall Mater Trans B, 1999, 30(5): 945 doi: 10.1007/s11663-999-0100-z [66] Harashinia K, Mizoguchi S, Kajioka H. Kinetics of nitrogen disorption from low nitrogen liquid iron by blowing Ar and reducing gas mixture or by top injection of iron ore powder under reduced pressure. Tetsu-to-Hagane, 1988, 74(3): 441 doi: 10.2355/tetsutohagane1955.74.3_441 [67] Neuschütz D, Spirin D. Nitrogen removal and arc voltage increase in EAF steelmaking by methane injection into the arc. Steel Res Int, 2003, 74(1): 19 doi: 10.1002/srin.200300156 [68] Pal J. Thermodynamic analysis of nitrogen removal in EAF by DRI fines injection. Ironmak Steelmak, 2006, 33(6): 465 doi: 10.1179/174328106X149824 [69] Wei G S, Zhu R, Dong K, et al. Influence of bottom-blowing gas species on the nitrogen content in molten steel during the EAF steelmaking process. Ironmak Steelmak, 2018, 45(9): 839 doi: 10.1080/03019233.2017.1410949 -