<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

“雙碳”背景下低碳排煉鋼流程選擇及關鍵技術

張福君 楊樹峰 李京社 劉威 王田田

張福君, 楊樹峰, 李京社, 劉威, 王田田. “雙碳”背景下低碳排煉鋼流程選擇及關鍵技術[J]. 工程科學學報, 2022, 44(9): 1483-1495. doi: 10.13374/j.issn2095-9389.2021.12.29.004
引用本文: 張福君, 楊樹峰, 李京社, 劉威, 王田田. “雙碳”背景下低碳排煉鋼流程選擇及關鍵技術[J]. 工程科學學報, 2022, 44(9): 1483-1495. doi: 10.13374/j.issn2095-9389.2021.12.29.004
ZHANG Fu-jun, YANG Shu-feng, LI Jing-she, LIU Wei, WANG Tian-tian. Selection and key technologies of low-carbon steelmaking processes under the background of “Double Carbon”[J]. Chinese Journal of Engineering, 2022, 44(9): 1483-1495. doi: 10.13374/j.issn2095-9389.2021.12.29.004
Citation: ZHANG Fu-jun, YANG Shu-feng, LI Jing-she, LIU Wei, WANG Tian-tian. Selection and key technologies of low-carbon steelmaking processes under the background of “Double Carbon”[J]. Chinese Journal of Engineering, 2022, 44(9): 1483-1495. doi: 10.13374/j.issn2095-9389.2021.12.29.004

“雙碳”背景下低碳排煉鋼流程選擇及關鍵技術

doi: 10.13374/j.issn2095-9389.2021.12.29.004
基金項目: 國家自然科學基金資助項目(51734003)
詳細信息
    通訊作者:

    楊樹峰, E-mail: yangshufeng@ustb.edu.cn

    李京社, E-mail: Lijingshe@ustb.edu.cn

  • 中圖分類號: TF741.5

Selection and key technologies of low-carbon steelmaking processes under the background of “Double Carbon”

More Information
  • 摘要: “碳達峰”、“碳中和”是一個總體的宏觀概念,為中國未來經濟與環境發展提供了籠統的理論框架與基本理念。基于“雙碳”目標的深度解析,中國鋼鐵行業處于“碳鎖定”狀態,只有同時進行技術和制度變革才能實現“碳解鎖”。結合當前鋼鐵工業生產結構、冶煉原材料供應、冶煉能源、節能減排水平以及CO2排放現狀,給出了合理的碳達峰時間及峰值。未來二三十年中國鋼鐵生產主要流程依然是長流程和短流程并存,氫冶金技術還難以進行工業生產,提升全廢鋼短流程煉鋼的比例是降低碳排放的主要措施。從長遠來看,長流程中煉鐵工藝由碳還原逐漸向氫還原是大勢所趨,煉鐵工序的產品將由原來的高碳鐵水轉變為低碳鐵水或直接還原鐵(DRI),具有較高脫碳的轉爐煉鋼就沒有明顯優勢,發展電弧爐煉鋼流程是必然選擇。但實現“碳中和”還要依靠氫冶金,碳捕集、利用與封存技術的發展和應用,以及制度的變革。基于近年在全廢鋼電弧爐相關方面的理論研究、裝備開發與實踐的深入研究,針對全廢鋼電弧爐冶煉工藝存在的問題,開發了一系列關鍵技術,實現在全廢鋼條件下滿足當前連鑄生產工藝節奏以及鋼液質量的控制,為全廢鋼電弧爐的發展提供理論支持。

     

  • 圖  1  1991—2019年中國鋼鐵行業粗鋼產量和CO2排放總量、噸鋼CO2排放

    Figure  1.  1991—2019 China’s steel industry’s crude steel production and total CO2 emissions, CO2 emissions per ton of steel

    圖  2  不同工藝流程噸鋼碳排放量

    Figure  2.  Carbon emissions per ton of steel in different processes

    圖  3  2010—2020年中國鐵礦石進口量

    Figure  3.  China’s iron ore import volume from 2010 to 2020

    圖  4  社會鋼鐵積蓄量與產生量統計預測[40]

    Figure  4.  Statistical forecast of social steel storage and production[40]

    圖  5  廢鋼熔化傳熱示意圖

    Figure  5.  Schematic diagram of melting heat transfer of scrap steel

    圖  6  廢鋼中心溫度隨浸入時間的變化

    Figure  6.  Change of core temperature of scrap steel with immersion time

    圖  7  廢鋼中心溫度隨浸入時間的變化

    Figure  7.  Change of core temperature of scrap steel with immersion time

    圖  8  氧氣射流流場示意圖

    Figure  8.  Schematic diagram of oxygen jet flow field

    圖  9  噴吹脫磷反應原理示意圖

    Figure  9.  Schematic diagram of the principle of spray dephosphorization reaction

    圖  10  CO2?Ar動態底吹脫氮示意圖

    Figure  10.  Schematic diagram of CO2?Ar dynamic bottom-blowing nitrogen removal

    表  1  國際部分長流程企業噸鋼CO2排放數據

    Table  1.   CO2 emission data per ton of steel for some international long-process enterprises

    YearCO2 emission data per ton of steel/t
    Nippon
    Steel
    JFEPOSCONLMKSeverstalArcelor-
    Mittal
    Tata
    Steel
    China
    Steel
    20161.992.021.881.911.992.142.30
    20172.012.061.901.901.911.122.291.89
    20182.022.041.921.912.102.122.301.63
    下載: 導出CSV

    表  2  CO2脫除的方法和原理[29]

    Table  2.   Methods and principles of CO2 removal[29]

    PrincipleMethodProcess advantageProcess disadvantages
    Physical methodAdsorption methodSimple process and low energy consumptionHigh consumption of adsorbent, frequent desorption,
    and a high degree of automation
    Membrane separationSimple operation, low pollution,
    high extraction efficiency
    The membrane is susceptible to chemical damage,
    and there must be a pressure difference before
    and after the separation membrane
    Cryogenic distillationThe process is simple, the removal efficiency
    is high, and it is easy to realize
    Large equipment, high energy consumption,
    the poor separation effect
    Solvent adsorption methodThe process is simple, the operation is reliable,
    and the solvent is cheap and easy to get
    High equipment investment, high operating cost,
    and environmental pollution
    Chemical methodAmmonia washing methodWith high removal efficiency,
    the adsorbent can be recycled
    The equipment is corrosive, and the adsorbent
    recovery requires energy
    Amine methodWith high removal efficiency,
    the adsorbent can be recycled
    Low load capacity, the high corrosion rate of the
    equipment, easy degradation of amines
    Electrochemical methodHigh removal efficiency and low removal costElectrolyte preparation is difficult, equipment is prone
    to corrosion, and the battery is prone to poisoning
    Cyclic combustion methodSimple process and low energy consumptionThe scope of application is limited, suitable for only
    CO2 and H2O in the exhaust gas
    下載: 導出CSV

    表  3  熔化各階段限制性環節及優化措施

    Table  3.   Restrictive links and optimization measures at each stage of melting

    Melting stageHeat transfer equationHeat flux relationshipLimiting factorOptimization measures
    Initial stage steelQ=h·ΔTQs-lo>Qlo>QlForm a steel shell;Increase scrap preheating temperature;
    air gap reduces heat transfer coefficient;
    form "iceberg”, reduce the specific surface areaoptimize feeding method
    Main melting periodQs-hi<Qhi<QlReduce temperature gradientIntegrated mixing technology to
    improve heat transfer coefficient
    Heat penetration fast meltingQs-hi=Qhi<QlFurther, reduce the temperature gradientIncrease heating rate, increase the
    temperature gradient
    下載: 導出CSV

    表  4  不同脫磷方法的爐渣組成 [62]

    Table  4.   Slag composition of different dephosphorization methods [62]

    Dephosphorization methodSteel slag sampleCaO mass fraction/%P2O5 mass fraction/%SiO2 mass fraction/%T.Fe mass fraction/%MgO mass fraction/%
    Traditional dephosphorizationSlag particles 138.82.811.428.23.9
    Slag particles 241.63.712.926.75.4
    Efficient dephosphorizationSlag particles 160.417.314.80.90.4
    Slag particles 266.310.414.70.90.3
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang Y X, Luo H L, Wang C. Progress and trends of global carbon neutrality pledges. Clim Change Res, 2021, 17(1): 88

    張雅欣, 羅薈霖, 王燦. 碳中和行動的國際趨勢分析. 氣候變化研究進展, 2021, 17(1):88
    [2] Li X C, Li B, Huo D M, et al. Concerns on drafting carbon emission standard for improvement of China’s iron and steel industry with sustainable development. China Metall, 2021, 31(6): 1

    李新創, 李冰, 霍咚梅, 等. 推進中國鋼鐵行業低碳發展的碳排放標準思考. 中國冶金, 2021, 31(6):1
    [3] Liu X L, Cui L L, Li B, et al. Research on the high-quality development path of China’s energy industry under the target of carbon neutralization. J Beijing Inst Technol Soc Sci Ed, 2021, 23(3): 1

    劉曉龍, 崔磊磊, 李彬, 等. 碳中和目標下中國能源高質量發展路徑研究. 北京理工大學學報(社會科學版), 2021, 23(3):1
    [4] Ma J T, Huang G T. Research on complete energy consumption in China’s steel industry. Price Theory Pract, 2018(4): 17

    馬驥濤, 黃桂田. 中國鋼鐵行業完全能源消耗研究. 價格理論與實踐, 2018(4):17
    [5] Zhang Q, Shen J L, Xu L S. Carbon peak and low-carbon transition path of China’s iron and steel industry. Iron Steel, 2021, 56(10): 152

    張琦, 沈佳林, 許立松. 中國鋼鐵工業碳達峰及低碳轉型路徑. 鋼鐵, 2021, 56(10):152
    [6] Zhang J L, Liu Z J, Jiao K X, et al. Progress of new technologies and fundamental theory about ironmaking. Chin J Eng, 2021, 43(12): 1630

    張建良, 劉征建, 焦克新, 等. 煉鐵新技術及基礎理論研究進展. 工程科學學報, 2021, 43(12):1630
    [7] Shangguan F Q, Liu Z D, Yin R Y. Study on implementation path of “carbon peak” and “carbon neutrality” in steel industry in China. China Metall, 2021, 31(9): 15

    上官方欽, 劉正東, 殷瑞鈺. 鋼鐵行業“碳達峰”“碳中和”實施路徑研究. 中國冶金, 2021, 31(9):15
    [8] Zhang C X, Wang H F, Zhang S R, et al. Strategic study on green development of Chinese steel industry. Iron Steel, 2015, 50(10): 1

    張春霞, 王海風, 張壽榮, 等. 中國鋼鐵工業綠色發展工程科技戰略及對策. 鋼鐵, 2015, 50(10):1
    [9] Wang H F, Li X P, Zhou J C, et al. Status and development trend of energy saving technology of Chinese steel industry. Energy Metall Ind, 2018, 37(4): 3 doi: 10.3969/j.issn.1001-1617.2018.04.001

    王海風, 酈秀萍, 周繼程, 等. 鋼鐵工業節能技術發展現狀及趨勢. 冶金能源, 2018, 37(4):3 doi: 10.3969/j.issn.1001-1617.2018.04.001
    [10] Yin R Y. Theory and method of metallurgical process integration. Beijing: Metallurgical Industry Press, 2013

    殷瑞鈺. 冶金流程集成理論與方法. 北京: 冶金工業出版社, 2013
    [11] Zhang L Q, Chen J. Discussion on achieving “carbon peak” and suggestions for reducing carbon in iron and steel industry. China Metall, 2021, 31(9): 21

    張龍強, 陳劍. 鋼鐵工業實現“碳達峰”探討及減碳建議. 中國冶金, 2021, 31(9):21
    [12] Zhang Q, Xu J, Wang Y J, et al. Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows. Appl Energy, 2018, 209: 251 doi: 10.1016/j.apenergy.2017.10.084
    [13] Wang P, Li W, Kara S. Cradle-to-cradle modeling of the future steel flow in China. Resour Conserv Recycl, 2017, 117: 45 doi: 10.1016/j.resconrec.2015.07.009
    [14] den Elzen M, Fekete H, Höhne N, et al. Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030? Energy Policy, 2016, 89: 224
    [15] Energy Statistics Department, National Bureau of Statistics. China Energy Statistics Yearbook 2018. Beijing: China Statistics Press, 2019

    國家統計局能源統計司. 中國能源統計年鑒2018. 北京: 中國統計出版社, 2019
    [16] Shangguan F Q, Zhou J C, Wang H F, et al. Climate change and decarbonization development of steel industry. Iron Steel, 2021, 56(5): 1

    上官方欽, 周繼程, 王海風, 等. 氣候變化與鋼鐵工業脫碳化發展. 鋼鐵, 2021, 56(5):1
    [17] Unruh G C. Understanding carbon lock-in. Energy Policy, 2000, 28(12): 817 doi: 10.1016/S0301-4215(00)00070-7
    [18] Unruh G C. Escaping carbon lock-in. Energy Policy, 2002, 30(4): 317 doi: 10.1016/S0301-4215(01)00098-2
    [19] Zhang S Y. Research on carbon neutralization path based on green premium hypothesis. Petroleum Petrochem Today, 2021, 29(7): 44 doi: 10.3969/j.issn.1009-6809.2021.07.008

    張松巖. 基于綠色溢價假設的碳中和路徑研究. 當代石油石化, 2021, 29(7):44 doi: 10.3969/j.issn.1009-6809.2021.07.008
    [20] Shan Y L, Huang Q, Guan D B, et al. China CO2 emission accounts 2016—2017. Sci Data, 2020, 7: 54 doi: 10.1038/s41597-020-0393-y
    [21] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

    邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
    [22] Zhang Q, Zhang W, Wang Y J, et al. Potential of energy saving and emission reduction and energy efficiency improvement of China's steel industry. Iron Steel, 2019, 54(2): 7

    張琦, 張薇, 王玉潔, 等. 中國鋼鐵工業節能減排潛力及能效提升途徑. 鋼鐵, 2019, 54(2):7
    [23] Wang X D, Hao L Y. Analysis of modern ironmaking technology and low-carbon development direction. China Metall, 2021, 31(5): 1

    王新東, 郝良元. 現代煉鐵工藝及低碳發展方向分析. 中國冶金, 2021, 31(5):1
    [24] Anonymous. Siemens, midrex to build largest single-module direct reduction plant. Eng Min J, 2013, 214(9): 105
    [25] Wang Z, Chu M S, Li Z, et al. Fundamental study on application of gas-based shaft furnace direct reduction process to high efficiency and clean utilization of paigeite. Adv Mater Res, 2011, 233-235: 753 doi: 10.4028/www.scientific.net/AMR.233-235.753
    [26] Li F, Chu M S, Tang J, et al. Environmental performance analysis of coal gasification—shaft furnace—electric furnace process and BF—BOF process based on life cycle assessment. J Iron Steel Res, 2020, 32(7): 577

    李峰, 儲滿生, 唐玨, 等. 基于LCA的煤制氣—氣基豎爐—電爐短流程和高爐—轉爐流程環境影響分析. 鋼鐵研究學報, 2020, 32(7):577
    [27] Poimenidis I A, Tsanakas M D, Papakosta N, et al. Enhanced hydrogen production through alkaline electrolysis using laser-nanostructured nickel electrodes. Int J Hydrog Energy, 2021, 46(75): 37162 doi: 10.1016/j.ijhydene.2021.09.010
    [28] Hasan M M F, First E L, Boukouvala F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput Chem Eng, 2015, 81: 2 doi: 10.1016/j.compchemeng.2015.04.034
    [29] Mao Y L, Qu Y L, Li B, et al. Development and application potential analysis of carbon dioxide capture technology from flue gas in steel works. Iron Steel, 2016, 51(8): 6

    毛艷麗, 曲余玲, 李博, 等. 鋼廠煙氣CO2捕捉技術的開發及其應用前景分析. 鋼鐵, 2016, 51(8):6
    [30] Saima H, Mogi Y, Haraoka T. Development of PSA technology for the separation of carbon dioxide from blast furnace gas. JFE Tech Rep, 2014, 19: 133
    [31] Zhang F Y. Design and Analysis of Reheating Furnace Flue Gas Carbon Capture System Based on the Sensible Heat of Continuous Casting Slabs [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2018

    張峰源. 基于品種鋼連鑄坯顯熱的加熱爐尾氣碳捕集系統設計與分析[學位論文]. 上海: 上海交通大學, 2018
    [32] Park J H, Yang J, Kim D, et al. Review of recent technologies for transforming carbon dioxide to carbon materials. Chem Eng J, 2022, 427: 130980 doi: 10.1016/j.cej.2021.130980
    [33] Wang X L, Sanna A, Maroto-Valer M M, et al. Carbon dioxide capture and storage by pH swing mineralization using recyclable ammonium salts and flue gas mixtures. Greenh Gases Sci Technol, 2015, 5(4): 389 doi: 10.1002/ghg.1494
    [34] Xu X Z, Gu X G, Wang Z Y, et al. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renew Sustain Energy Rev, 2019, 110: 65 doi: 10.1016/j.rser.2019.04.050
    [35] Ma C W, Li Z, Feng W H, et al. Effect of the steelmaking benefit taken by the scrap price and scrap rate. China Metall, 2015, 25(9): 6

    馬春武, 李智, 封偉華, 等. 廢鋼價格與廢鋼比對煉鋼經濟效益的影響. 中國冶金, 2015, 25(9):6
    [36] Na H M, Gao C K, Tian M Y, et al. MFA-based analysis of CO2 emissions from typical industry in urban—As a case of steel industry. Ecol Model, 2017, 365: 45 doi: 10.1016/j.ecolmodel.2017.09.023
    [37] Yao C L, Zhu H C, Jiang Z H, et al. CO2 emissions calculation and analysis of electric arc furnace with continuous feeding of only scrap. J Mater Metall, 2020, 19(4): 259

    姚聰林, 朱紅春, 姜周華, 等. 全廢鋼連續加料電弧爐短流程碳排放計算及分析. 材料與冶金學報, 2020, 19(4):259
    [38] Liu H Q, Fu J X, Liu S Y, et al. Calculation methods and application of carbon dioxide emission during steel-making process. Iron Steel, 2016, 51(4): 74

    劉宏強, 付建勛, 劉思雨, 等. 鋼鐵生產過程二氧化碳排放計算方法與實踐. 鋼鐵, 2016, 51(4):74
    [39] Zang Y, Liu W G, Zhang J G. Accelerating the utilization of scrap to promote energy-saving and emission-reduction of China’s iron and steel industry. Res Iron Steel, 2010, 38(4): 43

    臧悅, 劉維廣, 張建國. 加快廢鋼利用促進鋼鐵工業節能減排. 鋼鐵研究, 2010, 38(4):43
    [40] Huang L. Comparative analysis on environmental impact of long process and short process production mode of iron and steel. Environ Prot Circular Economy, 2016, 36(4): 31 doi: 10.3969/j.issn.1674-1021.2016.04.011

    黃亮. 鋼鐵長流程和短流程生產模式環境影響對比分析. 環境保護與循環經濟, 2016, 36(4):31 doi: 10.3969/j.issn.1674-1021.2016.04.011
    [41] Shangguan F Q, Yin R Y, Li Y, et al. Dissussion on strategic significance of developing full scrap EAF process in China. Iron Steel, 2021, 56(8): 86

    上官方欽, 殷瑞鈺, 李煜, 等. 論中國發展全廢鋼電爐流程的戰略意義. 鋼鐵, 2021, 56(8):86
    [42] Bai M. 70 years of development achievements of New China's power industry. Price Theory Pract, 2019(5): 4

    白玫. 新中國電力工業70年發展成就. 價格理論與實踐, 2019(5):4
    [43] Li J H, Provatas N, Brooks G. Kinetics of scrap melting in liquid steel. Metall Mater Trans B, 2005, 36(2): 293 doi: 10.1007/s11663-005-0031-2
    [44] LI J H. Kinetics of Steel Scrap Melting in Liquid Steel Bath in an Electric Arc Furnace [Dissertation]. Hamilton: McMaster University, 2007
    [45] Wright J K. Steel dissolution in quiescent and gas stirred Fe/C melts. Metall Mater Trans B, 1989, 20(3): 363 doi: 10.1007/BF02696988
    [46] Specht E, Jeschar R. Kinetics of steel melting in carbon-steel alloys. Steel Res, 1993, 64(1): 28 doi: 10.1002/srin.199300978
    [47] Wei G S, Zhu R, Tang T P, et al. Study on the melting characteristics of steel scrap in molten steel. Ironmak Steelmak, 2019, 46(7): 609 doi: 10.1080/03019233.2019.1609738
    [48] Duan W P, Yang S F, Li J S, et al. Development of rapid melting technology for steel scrap in modern electric arc furnace of China. China Metall, 2021, 31(9): 78

    段衛平, 楊樹峰, 李京社, 等. 中國現代電弧爐煉鋼廢鋼快速熔化技術進展. 中國冶金, 2021, 31(9):78
    [49] Xi X J, Yang S F, Li J S, et al. Thermal simulation experiments on scrap melting in liquid steel. Ironmak Steelmak, 2020, 47(4): 442 doi: 10.1080/03019233.2018.1540522
    [50] Jiao Q, Themelis N J. Mathematical modelling of heat transfer during the melting of solid particles in a liquid slag or metal bath. Can Metall Q, 1993, 32(1): 75 doi: 10.1179/cmq.1993.32.1.75
    [51] Toulouecski Y N, Zinurov I Y. Fuel Arc Furnace (FAF) for Effective Scrap Melting. Singapore: Springer Briefs in Applied Sciences and Technology, 2017
    [52] Steinparzer T, Haider M, Zauner F, et al. Electric arc furnace off-gas heat recovery and experience with a testing plant. Steel Res Int, 2014, 85(4): 519 doi: 10.1002/srin.201300228
    [53] Xu Y T, Li J, Fu J, et al. Thermal characteristics of scrap preheating in finger shaft furnace. Iron Steel, 2005, 40(12): 31 doi: 10.3321/j.issn:0449-749X.2005.12.008

    徐迎鐵, 李晶, 傅杰, 等. 煙道豎爐電弧爐廢鋼預熱特性研究. 鋼鐵, 2005, 40(12):31 doi: 10.3321/j.issn:0449-749X.2005.12.008
    [54] Shi W Z, Yang N C, Huang Q M, et al. Development of scrap preheating technology on EAF. Ind Heat, 2019, 48(6): 26 doi: 10.3969/j.issn.1002-1639.2019.06.009

    施維枝, 楊寧川, 黃其明, 等. 電弧爐廢鋼預熱技術發展. 工業加熱, 2019, 48(6):26 doi: 10.3969/j.issn.1002-1639.2019.06.009
    [55] Wang X J, Weng T X. Development of ECOARC furnace in China from the concept of arc steelmaking. China Steel, 2018(3): 8 doi: 10.3969/j.issn.1672-5115.2018.03.004

    王新江, 翁泰祥. 從電弧煉鋼概念看中國發展ECOARC電爐. 中國鋼鐵業, 2018(3):8 doi: 10.3969/j.issn.1672-5115.2018.03.004
    [56] Fleischanderl A, Dorndorf M, Zauner F, et al. New benchmark for energy efficient EAF steelmaking—Quantum and heat recovery. Ironmak Steelmak, 2011, 38(7): 494 doi: 10.1179/030192311X13135947813933
    [57] Memoli F, Giavani C, Grasselli A. Consteel EAF and conventional EAF: A comparison in maintenance practices. La Metallurgia Italiana, 2010, 102(7): 9
    [58] Zhu R, Wei G S. Study on the composite blowing stirring intensity in EAF steelmaking process // Proceedings of National Steelmaking Conference. Changsha, 2016: 7

    朱榮, 魏光升. 電弧爐煉鋼復合吹煉攪拌強度的研究//全國煉鋼學術會議論文集. 長沙, 2016:7
    [59] He C L, Zhu R, Dong K, et al. Modeling of an impinging oxygen jet on molten bath surface in 150 t EAF. J Iron Steel Res Int, 2011, 18(9): 13 doi: 10.1016/S1006-706X(12)60028-4
    [60] Liu F H, Zhu R, Dong K, et al. Simulation and application of bottom-blowing in electrical arc furnace steelmaking process. ISIJ Int, 2015, 55(11): 2365 doi: 10.2355/isijinternational.ISIJINT-2015-352
    [61] Wei G S, Zhu R, Tian B H, et al. Impact characteristics of submerged gas-solid injection in the manufacturing process of steel. Chin J Eng, 2020, 42(Suppl 1): 47

    魏光升, 朱榮, 田博涵, 等. 金屬熔池埋入式氣-固噴吹沖擊的特征規律. 工程科學學報, 2020, 42(增刊1): 47
    [62] Tsutomu N, Shuji T, Osamu H, et al. Mechanism of hot metal dephosphorization by injecting lime base fluxes with oxygen into bottom blown converter. Trans Iron Steel Inst Jpn, 1983, 23(6): 513 doi: 10.2355/isijinternational1966.23.513
    [63] Koin I, Kazuo A, Hiroshi S. Kinetic study on nitrogen absorption and desorption of molten iron. Trans Iron Steel Inst Jpn, 1988, 28(1): 41 doi: 10.2355/isijinternational1966.28.41
    [64] Zhang B Y, Tian B H, Wei G S. New process of nitrogen content change and control technology in EAF steelmaking process. Ind Heat, 2020, 49(6): 19 doi: 10.3969/j.issn.1002-1639.2020.06.005

    張伯影, 田博涵, 魏光升. 電弧爐煉鋼流程氮含量變化及控制技術新進展. 工業加熱, 2020, 49(6):19 doi: 10.3969/j.issn.1002-1639.2020.06.005
    [65] Goldstein D A, Fruehan R J. Mathematical model for nitrogen control in oxygen steelmaking. Metall Mater Trans B, 1999, 30(5): 945 doi: 10.1007/s11663-999-0100-z
    [66] Harashinia K, Mizoguchi S, Kajioka H. Kinetics of nitrogen disorption from low nitrogen liquid iron by blowing Ar and reducing gas mixture or by top injection of iron ore powder under reduced pressure. Tetsu-to-Hagane, 1988, 74(3): 441 doi: 10.2355/tetsutohagane1955.74.3_441
    [67] Neuschütz D, Spirin D. Nitrogen removal and arc voltage increase in EAF steelmaking by methane injection into the arc. Steel Res Int, 2003, 74(1): 19 doi: 10.1002/srin.200300156
    [68] Pal J. Thermodynamic analysis of nitrogen removal in EAF by DRI fines injection. Ironmak Steelmak, 2006, 33(6): 465 doi: 10.1179/174328106X149824
    [69] Wei G S, Zhu R, Dong K, et al. Influence of bottom-blowing gas species on the nitrogen content in molten steel during the EAF steelmaking process. Ironmak Steelmak, 2018, 45(9): 839 doi: 10.1080/03019233.2017.1410949
  • 加載中
圖(10) / 表(4)
計量
  • 文章訪問數:  2415
  • HTML全文瀏覽量:  355
  • PDF下載量:  187
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-29
  • 網絡出版日期:  2022-03-07
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回