<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

CO2頂吹比例對轉爐終點控制的影響

董建鋒 魏光升 朱榮 董凱 張慶南 張丙龍

董建鋒, 魏光升, 朱榮, 董凱, 張慶南, 張丙龍. CO2頂吹比例對轉爐終點控制的影響[J]. 工程科學學報, 2022, 44(9): 1476-1482. doi: 10.13374/j.issn2095-9389.2021.12.27.008
引用本文: 董建鋒, 魏光升, 朱榮, 董凱, 張慶南, 張丙龍. CO2頂吹比例對轉爐終點控制的影響[J]. 工程科學學報, 2022, 44(9): 1476-1482. doi: 10.13374/j.issn2095-9389.2021.12.27.008
DONG Jian-feng, WEI Guang-sheng, ZHU Rong, DONG Kai, ZHANG Qing-nan, ZHANG Bing-long. Effect of the CO2 top-blowing ratio on the end of the converter[J]. Chinese Journal of Engineering, 2022, 44(9): 1476-1482. doi: 10.13374/j.issn2095-9389.2021.12.27.008
Citation: DONG Jian-feng, WEI Guang-sheng, ZHU Rong, DONG Kai, ZHANG Qing-nan, ZHANG Bing-long. Effect of the CO2 top-blowing ratio on the end of the converter[J]. Chinese Journal of Engineering, 2022, 44(9): 1476-1482. doi: 10.13374/j.issn2095-9389.2021.12.27.008

CO2頂吹比例對轉爐終點控制的影響

doi: 10.13374/j.issn2095-9389.2021.12.27.008
基金項目: 國家自然科學基金資助項目(52004023);山東省重大科技創新工程資助項目(2019JZZY010358)
詳細信息
    通訊作者:

    E-mail: wgshsteel@126.com

  • 中圖分類號: TF718

Effect of the CO2 top-blowing ratio on the end of the converter

More Information
  • 摘要: 結合CO2的高溫反應特性,針對性地制定了CO2冶煉工藝,并對轉爐頂吹CO2比例對終點磷、氮和碳氧濃度積的影響進行了工業試驗研究。結果表明:隨著轉爐冶煉前中期CO2頂吹比例由4.84%逐漸提高到9.68%,轉爐終點磷的質量分數先下降后基本不變,氮的質量分數逐漸下降,碳氧濃度積與渣中TFe變化趨勢基本相同,均為先降低后增加,對于不同指標最佳頂吹CO2比例不同。試驗轉爐終點磷、氮的質量分數、碳氧濃度積與渣中TFe均下降,下降比例最高分別為20.4%、34.3%、12.92%和8.89%。

     

  • 圖  1  CO2和O2與各元素在298 K時的標準摩爾反應焓

    Figure  1.  Standard mole reaction enthalpy of CO2 and O2 with elements at 298 K

    圖  2  平衡CO分壓與碳活度的關系

    Figure  2.  Relationship between equilibrium CO partial pressure and carbon activity

    圖  3  噴吹CO2工業試驗示意圖

    Figure  3.  Schematic diagram of CO2 injection test

    圖  4  不同CO2噴吹工藝下轉爐終點磷的質量分數

    Figure  4.  Mass fraction of endpoint phosphorus in converter under different CO2 injection processes

    圖  5  不同CO2噴吹工藝下轉爐終點氮的質量分數

    Figure  5.  Mass fraction of endpoint nitrogen in converter under different CO2 injection processes

    圖  6  不同CO2噴吹工藝時額外氣泡及與鋼液氮平衡的氮分壓

    Figure  6.  Nitrogen partial pressure in additional bubbles and equilibrium with liquid steel nitrogen in different CO2 injection processes

    圖  7  不同CO2噴吹工藝下轉爐終點碳氧濃度積及渣中TFe的質量分數 

    Figure  7.  Endpoint carbon and oxygen concentration product of converter and mass fraction of TFe in slag under different CO2 injection processes

    表  1  CO2與鋼液中元素反應的熱力學數據[19]

    Table  1.   Thermodynamic data of reactions between CO2 and elements in molten steel[19]

    ElementReaction equation$\Delta {G^{\circleddash} }$/(J·mol?1)T=1873 K,
    $\Delta {G^{\circleddash} }$/(kJ·mol?1)
    C1/2O2 + [C]=CO(g)?140580?42.09T?219.41
    O2 + [C]=CO2(g)?419050+42.34T?339.75
    CO2(g) + [C]=2CO(g)137890?126.52T?99.08
    Fe1/2O2(g) + Fe(l)=(FeO)?229490+43.81T?147.43
    CO2(g) + Fe(l)=
    (FeO)+CO(g)
    48980?40.62T?27.10
    SiO2 + [Si]=(SiO2?804880+210.04T?411.48
    2CO2(g) + [Si]=
    (SiO2)+2CO(g)
    ?247940+41.18T?170.81
    Mn1/2O2 + [Mn]=(MnO)?412230+126.94T?174.47
    CO2(g) + [Mn]=
    (MnO)+CO(g)
    ?133760+42.51T?54.14
    P4/5[P] + O2(g) =
    2/5P2O5(g)
    ?375040+134.23T?123.63
    2/5[P]+CO2(g)
    1/5(P2O5)+CO(g)
    91555?16.86T59.98
    下載: 導出CSV

    表  2  工業試驗方案

    Table  2.   Industrial test scheme

    SchemeStageTop blowing O2 (standard status) /(m3·h?1)Top blowing CO2 (standard status) /(m3·h?1)Top blowing
    CO2 ratio/%
    Bottom blowing CO2/Ar (standard status) /(m3·h?1)
    Original processEarly and middle stage6200000800/0
    Later stage62000000/1200
    Test 1Early and middle stage5900030004.84800/0
    Later stage62000000/1200
    Test 2Early and middle stage5800040006.45800/0
    Later stage62000000/1200
    Test 3Early and middle stage5700050008.06800/0
    Later stage62000000/1200
    Test 4Early and middle stage5600060009.68800/0
    Later stage62000000/1200
    Note: the early and middle stage, in the top blowing refers to the stage before TSC, and in the bottom blowing refers to the stage when the top blowing oxygen supply is less than 9000 m3 (standard status); the later stage, in the top blowing refers to the stage after the TSC, in the bottom blowing refers to the stage when the top blowing oxygen supply is greater than 9000 m3 (standard status). Top blowing means that the converter injects O2 and CO2 through the oxygen gun, bottom blowing means that the converter injects Ar or CO2 through the bottom blowing element, and TSC means that the converter measures temperature and samples carbon through the auxiliary gun.
    下載: 導出CSV

    表  3  試驗碳、溫度與補熱劑加入情況

    Table  3.   Industrial test carbon, temperature, and heat compensating material

    SchemeElement mass fraction of molten iron/%Mass fraction of end carbon/%Endpoint temperature/ ℃Heat compensating material (per ton)/kgNumber of furnaces
    CSiMnPFerrosiliconCokeHigh efficiency heat compensating material
    Original process4.300.290.110.0690.03611651.81.1270.6442.67285
    Test 14.310.290.100.0680.03771649.71.8211.5973.57747
    Test 24.360.290.100.0710.03591653.12.1380.8931.308116
    Test 34.360.290.110.0730.03601656.21.0440.9811.424269
    Test 44.300.280.120.0720.03691658.32.3611.2792.557127
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Lü M, Zhu R, Bi X R, et al. Application research of carbon dioxide in BOF steelmaking process. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 126

    呂明, 朱榮, 畢秀榮, 等. 二氧化碳在轉爐煉鋼中的應用研究. 北京科技大學學報, 2011, 33(增刊1): 126
    [2] Wang Z L, Bao Y P, Wang D Z, et al. Leaching rule of phosphorus element in high phosphorus converter slag with different acids. Iron Steel, 2021, 56(4): 103

    王仲亮, 包燕平, 王達志, 等. 高磷轉爐渣中磷元素在不同酸中的浸出規律. 鋼鐵, 2021, 56(4):103
    [3] Wang L Z, Bao Y P, Li X. Comparison of two-stage dephosphorization during remaining slag-double slag process in converter. Iron Steel, 2019, 54(8): 37

    王林珠, 包燕平, 李翔. 轉爐留渣雙渣工藝兩階段脫磷對比. 鋼鐵, 2019, 54(8):37
    [4] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

    邢奕, 張文伯, 蘇偉, 等. 中國鋼鐵行業超低排放之路. 工程科學學報, 2021, 43(1):1
    [5] Lin W H, Jiao S Q, Sun J K, et al. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter. Chin J Eng, 2020, 42(7): 854

    林文輝, 焦樹強, 孫建坤, 等. 轉爐吹煉后期碳含量預報的改進指數模型. 工程科學學報, 2020, 42(7):854
    [6] Wei G S, Han B C, Zhu R. Metallurgical reaction behavior of CO2 as RH lifting gas. Chin J Eng, 2020, 42(2): 203

    魏光升, 韓寶臣, 朱榮. CO2作為RH提升氣的冶金反應行為研究. 工程科學學報, 2020, 42(2):203
    [7] Feng C, Zhu R, Liu R Z, et al. Industrial application of bottom-blown CO2 in basic oxygen furnace steelmaking process. Steel Res Int, 2021, 92(10): 2000704 doi: 10.1002/srin.202000704
    [8] Li Z, Zhu R, Ma G, et al. Laboratory investigation into reduction the production of dust in basic oxygen steelmaking. Ironmak Steelmak, 2017, 44(8): 601 doi: 10.1080/03019233.2016.1223906
    [9] Li Z Z, Zhu R, Liu R Z, et al. Comparison of smelting effects by bottom blowing different gases. Iron Steel, 2016, 51(9): 40

    李智崢, 朱榮, 劉潤藻, 等. 煉鋼過程底吹氣體的冶煉效果對比. 鋼鐵, 2016, 51(9):40
    [10] Jin R J, Zhu R, Feng L X, et al. Experimental study of steelmaking with CO2 and O2 mixed blowing. J Univ Sci Technol Beijing, 2007, 29(Suppl 1): 77

    靳任杰, 朱榮, 馮立新, 等. 二氧化碳-氧氣混合噴吹煉鋼實驗研究. 北京科技大學學報, 2007, 29(增刊1): 77
    [11] Yin Z J, Zhu R, Yi C, et al. Fundamental research on controlling BOF dust by COMI steel-making process. Iron Steel, 2009, 44(10): 92 doi: 10.3321/j.issn:0449-749X.2009.10.021

    尹振江, 朱榮, 易操, 等. 應用COMI煉鋼工藝控制轉爐煙塵基礎研究. 鋼鐵, 2009, 44(10):92 doi: 10.3321/j.issn:0449-749X.2009.10.021
    [12] Li Z Z, Zhu R, Liu R Z, et al. Study on the characteristics of CO2 and the effect of CO2 on material and energy in steelmaking process. Ind Heat, 2015, 44(6): 27 doi: 10.3969/j.issn.1002-1639.2015.06.007

    李智崢, 朱榮, 劉潤藻, 等. CO2的高溫特性及對煉鋼物料和能量的影響研究. 工業加熱, 2015, 44(6):27 doi: 10.3969/j.issn.1002-1639.2015.06.007
    [13] Zhang W, Li Z Z, Zhu R, et al. Experimental study of CO2 blowing in steelmaking process. Ind Heat, 2015, 44(2): 41 doi: 10.3969/j.issn.1002-1639.2015.02.012

    張偉, 李智崢, 朱榮, 等. 煉鋼過程噴吹CO2的實驗研究. 工業加熱, 2015, 44(2):41 doi: 10.3969/j.issn.1002-1639.2015.02.012
    [14] Yi C, Zhu R, Chen B Y, et al. Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process. ISIJ Int, 2009, 49(11): 1694 doi: 10.2355/isijinternational.49.1694
    [15] Zhu R, Bi X R, Lv M, et al. Research on steelmaking dust based on difference of Mn, Fe and Mo vapor pressure. Adv Mater Res, 2011, 284-286: 1216 doi: 10.4028/www.scientific.net/AMR.284-286.1216
    [16] Yi C, Zhu R, Yin Z J, et al. Experimental research of COMI steelmaking process based on 30 t converter. Chin J Process Eng, 2009, 9(Suppl 1): 222

    易操, 朱榮, 尹振江, 等. 基于30t轉爐的COMI煉鋼工藝實驗研究. 過程工程學報, 2009, 9(增刊1): 222
    [17] Ning X J, Yin Z J, Yi C, et al. Experimental research on dust reduction in steelmaking by CO2. Steelmaking, 2009, 25(5): 32

    寧曉鈞, 尹振江, 易操, 等. 利用CO2減少煉鋼煙塵的實驗研究. 煉鋼, 2009, 25(5):32
    [18] Lv M, Zhu R, Wei X Y, et al. Research on top and bottom mixed blowing CO2 in converter steelmaking process. Steel Res Int, 2012, 83(1): 11 doi: 10.1002/srin.201100166
    [19] Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004

    張家蕓. 冶金物理化學. 北京: 冶金工業出版社, 2004
    [20] Liu Y, Liu L, Tong P Q, et al. Process control of dephosphorization in initial smelting period of combined blowing BOF for clean steel. Steelmaking, 2006, 22(2): 27 doi: 10.3969/j.issn.1002-1043.2006.02.009

    劉躍, 劉瀏, 佟溥翹, 等. 優質高碳鋼高拉碳前期脫磷過程控制. 煉鋼, 2006, 22(2):27 doi: 10.3969/j.issn.1002-1043.2006.02.009
    [21] Li Z Z. Investigations on Fundamental Theory of CO2 Applied in Steelmaking Processes [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    李智崢. CO2應用于煉鋼的基礎理論研究[學位論文]. 北京: 北京科技大學, 2017
    [22] Li Z Z, Zhu R, Zhu Y Q. Effect of CO2 on material and energy in dephosphorization converters. Chin J Eng, 2016, 38(Suppl 1): 232

    李智崢, 朱榮, 朱益強. CO2對脫磷轉爐物料和能量的影響. 工程科學學報, 2016, 38(增刊1): 232
    [23] Guo H J. Metallurgical Physical Chemistry Course. 2nd Ed. Beijing: Metallurgical Industry Press, 2006

    郭漢杰. 冶金物理化學教程. 2版. 冶金工業出版社, 2006
    [24] Wu X, Bao Y P, Yue F, et al. Study on factors to affect the product of carbon content and oxygen content at blowing end-point of BOF steelmaking. Res Iron Steel, 2010, 38(2): 26

    武珣, 包燕平, 岳峰, 等. 影響轉爐終點碳氧積的因素分析. 鋼鐵研究, 2010, 38(2):26
    [25] Zhan D P, Qiu G X, Niu B, et al. Thermodynamics and kinetics research of nitrogen dissolution in steel. Steelmaking, 2015, 31(5): 7

    戰東平, 邱國興, 牛奔, 等. 氮在鋼液中溶解的熱力學及動力學研究. 煉鋼, 2015, 31(5):7
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  2133
  • HTML全文瀏覽量:  275
  • PDF下載量:  91
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-27
  • 網絡出版日期:  2022-03-07
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回