[1] |
Zavdoveev A, Poznyakov V, Baudin T, et al. Welding thermal cycle impact on the microstructure and mechanical properties of thermo-mechanical control process steels. Steel Res Int, 2021, 92(6): 2000645 doi: 10.1002/srin.202000645
|
[2] |
Wang G D, Shang C J, Liu Z Y. Steel for Marine Applications. Beijing: Chemical Industry Press, 2017王國棟, 尚成嘉, 劉振宇. 海洋工程鋼鐵材料. 北京: 化學工業出版社, 2017
|
[3] |
Zhang D, Terasaki H, Komizo Y I. In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C-Mn steel. Acta Mater, 2010, 58(4): 1369 doi: 10.1016/j.actamat.2009.10.043
|
[4] |
Kanazawa S, Nakashima A, Okamoto K, et al. Improved toughness of weld fussion zone by fine TiN particles and development of a steel for large heat input welding. Tetsu-to-Hagane, 1975, 61: 2589 doi: 10.2355/tetsutohagane1955.61.11_2589金沢正午, 中島明, 岡本健太郎, 等. 微細TiNによる溶接ボンド部靱性の改善と大入熱溶接用鋼の開発. 鉄と鋼, 1975, 61:2589 doi: 10.2355/tetsutohagane1955.61.11_2589
|
[5] |
Zou X D, Sun J C, Matsuura H, et al. Unravelling microstructure evolution and grain boundary misorientation in coarse-grained heat-affected zone of EH420 shipbuilding steel subject to varied welding heat inputs. Metall Mater Trans A, 2020, 51(3): 1044
|
[6] |
Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
|
[7] |
Yamamoto K, Hasegawa T, Takamura J. Effect of B on the intra-granular ferrite formation in Ti-oxides bearing steels. Tetsu-to-Hagane, 1993, 79(10): 1169 doi: 10.2355/tetsutohagane1955.79.10_1169山本広一, 長谷川俊水, 高村仁ー. 含Tiオキサイド鋼における粒內フェライト変態におよぼすBの効果. 鉄と鋼, 1993, 79(10):1169 doi: 10.2355/tetsutohagane1955.79.10_1169
|
[8] |
Goto H, Yamaguchi K, Ogibayashi S, et al. Behavior of oxide precipitation during rapid solidification of steel. Tetsu-to-Hagane, 1997, 83(12): 833 doi: 10.2355/tetsutohagane1955.83.12_833後藤裕規, 山口一, 荻林成章, 等. 鋼の急冷凝固時の酸化物晶出挙動. 鉄と鋼, 1997, 83(12):833 doi: 10.2355/tetsutohagane1955.83.12_833
|
[9] |
Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles. Nippon Steel Technical Report, 2004, 90: 2
|
[10] |
Yang J, Zhu K, Wang R Z, et al. Excellent heat affected zone toughness technology improved by use of strong deoxidizers. J Iron Steel Res Int, 2011, 18(Suppl 2): 141
|
[11] |
Fukunaga K, Watanabe Y, Yoshii K, et al. High strength TMCP steel plate for offshore structure with excellent HAZ toughness at welded joints. Nippon Steel Sumitomo Met Tech Rep, 2015(110): 43
|
[12] |
Jiang Q L, Li Y J, Wang J, et al. Effects of Mn and Ti on microstructure and inclusions in weld metal of high strength low alloy steel. Mater Sci Technol, 2011, 27(9): 1385 doi: 10.1179/026708310X12701149768052
|
[13] |
Sarma D, Karasev A, J?nsson P. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int, 2009, 49(7): 1063 doi: 10.2355/isijinternational.49.1063
|
[14] |
Ruosheng C G. Fine dispersion and composition control technology of oxide inclusions in steel. CISC Technol, 2011, 54(1): 27若生昌光. 鋼中的氧化物系夾雜物的微細分散及組成控制技術. 重鋼技術, 2011, 54(1):27
|
[15] |
Xu L Y, Yang J, Wang R Z, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J Iron Steel Res Int, 2018, 25(4): 433 doi: 10.1007/s42243-018-0054-y
|
[16] |
Wang Y, Zhu L G, Zhang Q J, et al. Effect of Mg treatment on refining the microstructure and improving the toughness of the heat-affected zone in shipbuilding steel. Metals, 2018, 8(8): 616 doi: 10.3390/met8080616
|
[17] |
Bin W, Bo S. In situ observation of the evolution of intragranular acicular ferrite at Ce-containing inclusions in 16Mn steel. Steel Res Int, 2012, 83(5): 487 doi: 10.1002/srin.201100266
|
[18] |
Mousavi Anijdan S H, Sediako D, Yue S. Optimization of flow stress in cool deformed Nb-microalloyed steel by combining strain induced transformation of retained austenite, cooling rate and heat treatment. Acta Mater, 2012, 60(3): 1221 doi: 10.1016/j.actamat.2011.11.019
|
[19] |
Zhang C L, Liu Y Z, Jiang C, et al. Effects of niobium and vanadium on hydrogen-induced delayed fracture in high strength spring steel. J Iron Steel Res Int, 2011, 18(6): 49 doi: 10.1016/S1006-706X(11)60077-0
|
[20] |
Zheng M X. Engineering Materials. 2nd Ed. Beijing: Tsinghua University Press, 1991鄭明新. 工程材料. 2版. 北京: 清華大學出版社, 1991
|
[21] |
Shi Z R, Wang J J, Chai X Y, et al. Effect of boron on intragranular ferrite nucleation mechanism in coarse grain heat-affected zone of high-nitrogen steel. Mater Lett, 2020, 258: 126819 doi: 10.1016/j.matlet.2019.126819
|
[22] |
Shim J H, Byun J S, Cho Y W, et al. Mn absorption characteristics of Ti2O3 inclusions in low carbon steels. Scr Mater, 2001, 44(1): 49 doi: 10.1016/S1359-6462(00)00560-1
|
[23] |
Byun J S, Shim J H, Cho Y W, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel. Acta Mater, 2003, 51(6): 1593 doi: 10.1016/S1359-6454(02)00560-8
|
[24] |
Lee J L. Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments. Acta Metall Mater, 1994, 42(10): 3291 doi: 10.1016/0956-7151(94)90461-8
|
[25] |
Shi Z R, Chai X Y, Chai F, et al. The mechanism of intragranular ferrite formed on Ti-rich (Ti, V)(C, N) precipitates in the coarse heat affected zone of a V-N-Ti microalloyed steel. Mater Lett, 2016, 175: 266 doi: 10.1016/j.matlet.2016.04.033
|
[26] |
Lin C K, Pan Y C, Su Y H F, et al. Effects of Mg-Al-O-Mn-S inclusion on the nucleation of acicular ferrite in magnesium-containing low-carbon steel. Mater Charact, 2018, 141: 318 doi: 10.1016/j.matchar.2018.05.005
|
[27] |
Lee J L, Pan Y T. The formation of intragranular acicular ferrite in simulated heat-affected zone. ISIJ Int, 1995, 35(8): 1027 doi: 10.2355/isijinternational.35.1027
|
[28] |
Wang C, Wang Z D, Wang G D. Effect of hot deformation and controlled cooling process on microstructures of Ti–Zr deoxidized low carbon steel. ISIJ Int, 2016, 56(10): 1800 doi: 10.2355/isijinternational.ISIJINT-2016-106
|
[29] |
Wang G D. Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production. Steel Roll, 2019, 36(1): 1王國棟. 高質量中厚板生產關鍵共性技術研發現狀和前景. 軋鋼, 2019, 36(1):1
|
[30] |
Wan X L, Wu K M, Cheng L, et al. In-situ observations of acicular ferrite growth behavior in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels. ISIJ Int, 2015, 55(3): 679 doi: 10.2355/isijinternational.55.679
|
[31] |
Shim J H, Byun J S, Cho Y W, et al. Hot deformation and acicular ferrite microstructure in C-Mn steel containing Ti2O3 inclusions. ISIJ Int, 2000, 40(8): 819 doi: 10.2355/isijinternational.40.819
|
[32] |
Thewlis G, Whiteman J A, Senogles D J. Dynamics of austenite to ferrite phase transformation in ferrous weld metals. Mater Sci Technol, 1997, 13(3): 257 doi: 10.1179/mst.1997.13.3.257
|
[33] |
Kang J S, Seol J B, Park C G. Three-dimensional characterization of bainitic microstructures in low-carbon high-strength low-alloy steel studied by electron backscatter diffraction. Mater Charact, 2013, 79: 110 doi: 10.1016/j.matchar.2013.02.009
|
[34] |
Nako H, Hatano H, Okazaki Y, et al. Crystal orientation relationships between acicular ferrite, oxide, and the austenite matrix. ISIJ Int, 2014, 54(7): 1690 doi: 10.2355/isijinternational.54.1690
|
[35] |
Wang B X, Liu X H, Wang G D. Inclusion characteristics and acicular ferrite nucleation in Ti-containing weld metals of X80 pipeline steel. Metall Mater Trans A, 2018, 49: 2124 doi: 10.1007/s11661-018-4570-y
|
[36] |
Blais C, L'Espérance G, Evans G M. Characterisation of inclusions found in C-Mn steel welds containing titanium. Sci Technol Weld Join, 1999, 4(3): 143 doi: 10.1179/136217199101537680
|
[37] |
Kang Y, Jeong S, Kang J H, et al. Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds. Metall Mater Trans A, 2016, 47(6): 2842 doi: 10.1007/s11661-016-3456-0
|
[38] |
Wu X Y, Wu S J, Yan C L, et al. Investigation of inclusion characteristics and intragranular acicular ferrite nucleation in Mg-containing low-carbon steel. Metall Mater Trans B, 2021, 52(2): 1012 doi: 10.1007/s11663-021-02073-1
|
[39] |
Yamamoto K, Hasegawa T, Takamura J I. Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels. ISIJ Int, 1996, 36(1): 80 doi: 10.2355/isijinternational.36.80
|
[40] |
Zhao F, Zhou N B, Wu M, et al. Intragranular ferrite formed in a V-Ti-N medium-carbon steel containing MnS inclusions. Steel Res Int, 2017, 88(12): 1700133 doi: 10.1002/srin.201700133
|
[41] |
Xiong Z H, Liu S L, Wang X M, et al. Relationship between crystallographic structure of the Ti2O3/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness. Mater Charact, 2015, 106: 232 doi: 10.1016/j.matchar.2015.06.001
|
[42] |
Zhu L G, Wang Y, Wang S M, et al. Research of microalloy elements to induce intragranular acicular ferrite in shipbuilding steel. Ironmak Steelmak, 2019, 46(6): 499 doi: 10.1080/03019233.2017.1405153
|
[43] |
Xu Y, Wu Y G, Zhang C J, et al. Precipitation and growth of inclusions in solidification process of steel. J Iron Steel Res Int, 2015, 22(9): 804 doi: 10.1016/S1006-706X(15)30074-1
|
[44] |
Wu X Y, Xiao P C, Wu S J, et al. Effect of molybdenum on the impact toughness of heat-affected zone in high-strength low-alloy steel. Materials, 2021, 14(6): 1430 doi: 10.3390/ma14061430
|
[45] |
Zhu L G, Wang Y, Wang S M, et al. Effect of microalloy elements V and Nb on induction of intragranular acicular ferrite. Iron Steel, 2019, 54(8): 216朱立光, 王雁, 王碩明, 等. 微合金元素釩和鈮對誘發針狀鐵素體的影響. 鋼鐵, 2019, 54(8):216
|
[46] |
Cui Z M, Zhu L G, Li Y L, et al. Relationship between crystal structure of inclusions and formation of acicular ferrites. J Iron Steel Res Int, 2016, 23(6): 586 doi: 10.1016/S1006-706X(16)30092-9
|