<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于氧化物冶金的微合金化研究

朱立光 張慶軍

朱立光, 張慶軍. 基于氧化物冶金的微合金化研究[J]. 工程科學學報, 2022, 44(9): 1529-1537. doi: 10.13374/j.issn2095-9389.2021.12.27.005
引用本文: 朱立光, 張慶軍. 基于氧化物冶金的微合金化研究[J]. 工程科學學報, 2022, 44(9): 1529-1537. doi: 10.13374/j.issn2095-9389.2021.12.27.005
ZHU Li-guang, ZHANG Qing-jun. Fundamental research of the microalloying theory based on oxide metallurgy technology[J]. Chinese Journal of Engineering, 2022, 44(9): 1529-1537. doi: 10.13374/j.issn2095-9389.2021.12.27.005
Citation: ZHU Li-guang, ZHANG Qing-jun. Fundamental research of the microalloying theory based on oxide metallurgy technology[J]. Chinese Journal of Engineering, 2022, 44(9): 1529-1537. doi: 10.13374/j.issn2095-9389.2021.12.27.005

基于氧化物冶金的微合金化研究

doi: 10.13374/j.issn2095-9389.2021.12.27.005
基金項目: 國家自然科學基金區域創新發展聯合基金重點資助項目(U21A20114);國家自然科學基金資助項目(51874137);河北省自然科學基金鋼鐵聯合基金資助項目(E2020209044);河北省重點研發項目(20311003D)
詳細信息
    通訊作者:

    朱立光, E-mail: hbkjdxzlg@163.com;張慶軍, E-mail: hbkjdxzlg@163.com

  • 中圖分類號: TG142.71

Fundamental research of the microalloying theory based on oxide metallurgy technology

More Information
  • 摘要: 介紹了國內外氧化物冶金技術的進展情況;分析了微合金體系中各元素的協同及交互作用以及夾雜物、第二相粒子析出、演變對鋼的相變、組織結構和性能的影響規律;闡述了冶煉、凝固過程中“有益”夾雜物析出的熱力學、動力學研究現狀,分析了夾雜物性質、尺寸、分布等對誘發晶內鐵素體形核的影響;綜述了熱加工和焊接過程對組織演化、晶粒細化、晶內鐵素體優先析出及提高母材鋼和焊接熱影響區強韌性機制。總結了氧化物冶金研究工作進展及存在的問題,結合課題組研究的成果,提出了基于氧化物冶金的微合金化思想并比較了其與傳統微合金化的異同;展望了基于氧化物冶金的微合金化理論方面需要進一步開展的研究工作。

     

  • 圖  1  氧化物冶金技術的發展

    Figure  1.  Development of oxide metallurgy technology

    圖  2  夾雜物和第二相粒子CGHAZ增韌機理

    Figure  2.  Toughening mechanism of inclusions and second-phase particles in CGHAZ

    圖  3  微氧區微合金復合脫氧過程脫氧產物的演化

    Figure  3.  Evolution of deoxidation products during compound deoxidation of microalloy in micro oxygen region

    圖  4  復合夾雜物誘導IGF析出

    Figure  4.  Precipitation of IGF induced by composite inclusions

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zavdoveev A, Poznyakov V, Baudin T, et al. Welding thermal cycle impact on the microstructure and mechanical properties of thermo-mechanical control process steels. Steel Res Int, 2021, 92(6): 2000645 doi: 10.1002/srin.202000645
    [2] Wang G D, Shang C J, Liu Z Y. Steel for Marine Applications. Beijing: Chemical Industry Press, 2017

    王國棟, 尚成嘉, 劉振宇. 海洋工程鋼鐵材料. 北京: 化學工業出版社, 2017
    [3] Zhang D, Terasaki H, Komizo Y I. In situ observation of the formation of intragranular acicular ferrite at non-metallic inclusions in C-Mn steel. Acta Mater, 2010, 58(4): 1369 doi: 10.1016/j.actamat.2009.10.043
    [4] Kanazawa S, Nakashima A, Okamoto K, et al. Improved toughness of weld fussion zone by fine TiN particles and development of a steel for large heat input welding. Tetsu-to-Hagane, 1975, 61: 2589 doi: 10.2355/tetsutohagane1955.61.11_2589

    金沢正午, 中島明, 岡本健太郎, 等. 微細TiNによる溶接ボンド部靱性の改善と大入熱溶接用鋼の開発. 鉄と鋼, 1975, 61:2589 doi: 10.2355/tetsutohagane1955.61.11_2589
    [5] Zou X D, Sun J C, Matsuura H, et al. Unravelling microstructure evolution and grain boundary misorientation in coarse-grained heat-affected zone of EH420 shipbuilding steel subject to varied welding heat inputs. Metall Mater Trans A, 2020, 51(3): 1044
    [6] Mabuchi H, Uemori R, Fujioka M. The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels. ISIJ Int, 1996, 36(11): 1406 doi: 10.2355/isijinternational.36.1406
    [7] Yamamoto K, Hasegawa T, Takamura J. Effect of B on the intra-granular ferrite formation in Ti-oxides bearing steels. Tetsu-to-Hagane, 1993, 79(10): 1169 doi: 10.2355/tetsutohagane1955.79.10_1169

    山本広一, 長谷川俊水, 高村仁ー. 含Tiオキサイド鋼における粒內フェライト変態におよぼすBの効果. 鉄と鋼, 1993, 79(10):1169 doi: 10.2355/tetsutohagane1955.79.10_1169
    [8] Goto H, Yamaguchi K, Ogibayashi S, et al. Behavior of oxide precipitation during rapid solidification of steel. Tetsu-to-Hagane, 1997, 83(12): 833 doi: 10.2355/tetsutohagane1955.83.12_833

    後藤裕規, 山口一, 荻林成章, 等. 鋼の急冷凝固時の酸化物晶出挙動. 鉄と鋼, 1997, 83(12):833 doi: 10.2355/tetsutohagane1955.83.12_833
    [9] Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles. Nippon Steel Technical Report, 2004, 90: 2
    [10] Yang J, Zhu K, Wang R Z, et al. Excellent heat affected zone toughness technology improved by use of strong deoxidizers. J Iron Steel Res Int, 2011, 18(Suppl 2): 141
    [11] Fukunaga K, Watanabe Y, Yoshii K, et al. High strength TMCP steel plate for offshore structure with excellent HAZ toughness at welded joints. Nippon Steel Sumitomo Met Tech Rep, 2015(110): 43
    [12] Jiang Q L, Li Y J, Wang J, et al. Effects of Mn and Ti on microstructure and inclusions in weld metal of high strength low alloy steel. Mater Sci Technol, 2011, 27(9): 1385 doi: 10.1179/026708310X12701149768052
    [13] Sarma D, Karasev A, J?nsson P. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int, 2009, 49(7): 1063 doi: 10.2355/isijinternational.49.1063
    [14] Ruosheng C G. Fine dispersion and composition control technology of oxide inclusions in steel. CISC Technol, 2011, 54(1): 27

    若生昌光. 鋼中的氧化物系夾雜物的微細分散及組成控制技術. 重鋼技術, 2011, 54(1):27
    [15] Xu L Y, Yang J, Wang R Z, et al. Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding. J Iron Steel Res Int, 2018, 25(4): 433 doi: 10.1007/s42243-018-0054-y
    [16] Wang Y, Zhu L G, Zhang Q J, et al. Effect of Mg treatment on refining the microstructure and improving the toughness of the heat-affected zone in shipbuilding steel. Metals, 2018, 8(8): 616 doi: 10.3390/met8080616
    [17] Bin W, Bo S. In situ observation of the evolution of intragranular acicular ferrite at Ce-containing inclusions in 16Mn steel. Steel Res Int, 2012, 83(5): 487 doi: 10.1002/srin.201100266
    [18] Mousavi Anijdan S H, Sediako D, Yue S. Optimization of flow stress in cool deformed Nb-microalloyed steel by combining strain induced transformation of retained austenite, cooling rate and heat treatment. Acta Mater, 2012, 60(3): 1221 doi: 10.1016/j.actamat.2011.11.019
    [19] Zhang C L, Liu Y Z, Jiang C, et al. Effects of niobium and vanadium on hydrogen-induced delayed fracture in high strength spring steel. J Iron Steel Res Int, 2011, 18(6): 49 doi: 10.1016/S1006-706X(11)60077-0
    [20] Zheng M X. Engineering Materials. 2nd Ed. Beijing: Tsinghua University Press, 1991

    鄭明新. 工程材料. 2版. 北京: 清華大學出版社, 1991
    [21] Shi Z R, Wang J J, Chai X Y, et al. Effect of boron on intragranular ferrite nucleation mechanism in coarse grain heat-affected zone of high-nitrogen steel. Mater Lett, 2020, 258: 126819 doi: 10.1016/j.matlet.2019.126819
    [22] Shim J H, Byun J S, Cho Y W, et al. Mn absorption characteristics of Ti2O3 inclusions in low carbon steels. Scr Mater, 2001, 44(1): 49 doi: 10.1016/S1359-6462(00)00560-1
    [23] Byun J S, Shim J H, Cho Y W, et al. Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel. Acta Mater, 2003, 51(6): 1593 doi: 10.1016/S1359-6454(02)00560-8
    [24] Lee J L. Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments. Acta Metall Mater, 1994, 42(10): 3291 doi: 10.1016/0956-7151(94)90461-8
    [25] Shi Z R, Chai X Y, Chai F, et al. The mechanism of intragranular ferrite formed on Ti-rich (Ti, V)(C, N) precipitates in the coarse heat affected zone of a V-N-Ti microalloyed steel. Mater Lett, 2016, 175: 266 doi: 10.1016/j.matlet.2016.04.033
    [26] Lin C K, Pan Y C, Su Y H F, et al. Effects of Mg-Al-O-Mn-S inclusion on the nucleation of acicular ferrite in magnesium-containing low-carbon steel. Mater Charact, 2018, 141: 318 doi: 10.1016/j.matchar.2018.05.005
    [27] Lee J L, Pan Y T. The formation of intragranular acicular ferrite in simulated heat-affected zone. ISIJ Int, 1995, 35(8): 1027 doi: 10.2355/isijinternational.35.1027
    [28] Wang C, Wang Z D, Wang G D. Effect of hot deformation and controlled cooling process on microstructures of Ti–Zr deoxidized low carbon steel. ISIJ Int, 2016, 56(10): 1800 doi: 10.2355/isijinternational.ISIJINT-2016-106
    [29] Wang G D. Status and prospects of research and development of key common technologies for high-quality heavy and medium plate production. Steel Roll, 2019, 36(1): 1

    王國棟. 高質量中厚板生產關鍵共性技術研發現狀和前景. 軋鋼, 2019, 36(1):1
    [30] Wan X L, Wu K M, Cheng L, et al. In-situ observations of acicular ferrite growth behavior in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels. ISIJ Int, 2015, 55(3): 679 doi: 10.2355/isijinternational.55.679
    [31] Shim J H, Byun J S, Cho Y W, et al. Hot deformation and acicular ferrite microstructure in C-Mn steel containing Ti2O3 inclusions. ISIJ Int, 2000, 40(8): 819 doi: 10.2355/isijinternational.40.819
    [32] Thewlis G, Whiteman J A, Senogles D J. Dynamics of austenite to ferrite phase transformation in ferrous weld metals. Mater Sci Technol, 1997, 13(3): 257 doi: 10.1179/mst.1997.13.3.257
    [33] Kang J S, Seol J B, Park C G. Three-dimensional characterization of bainitic microstructures in low-carbon high-strength low-alloy steel studied by electron backscatter diffraction. Mater Charact, 2013, 79: 110 doi: 10.1016/j.matchar.2013.02.009
    [34] Nako H, Hatano H, Okazaki Y, et al. Crystal orientation relationships between acicular ferrite, oxide, and the austenite matrix. ISIJ Int, 2014, 54(7): 1690 doi: 10.2355/isijinternational.54.1690
    [35] Wang B X, Liu X H, Wang G D. Inclusion characteristics and acicular ferrite nucleation in Ti-containing weld metals of X80 pipeline steel. Metall Mater Trans A, 2018, 49: 2124 doi: 10.1007/s11661-018-4570-y
    [36] Blais C, L'Espérance G, Evans G M. Characterisation of inclusions found in C-Mn steel welds containing titanium. Sci Technol Weld Join, 1999, 4(3): 143 doi: 10.1179/136217199101537680
    [37] Kang Y, Jeong S, Kang J H, et al. Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds. Metall Mater Trans A, 2016, 47(6): 2842 doi: 10.1007/s11661-016-3456-0
    [38] Wu X Y, Wu S J, Yan C L, et al. Investigation of inclusion characteristics and intragranular acicular ferrite nucleation in Mg-containing low-carbon steel. Metall Mater Trans B, 2021, 52(2): 1012 doi: 10.1007/s11663-021-02073-1
    [39] Yamamoto K, Hasegawa T, Takamura J I. Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels. ISIJ Int, 1996, 36(1): 80 doi: 10.2355/isijinternational.36.80
    [40] Zhao F, Zhou N B, Wu M, et al. Intragranular ferrite formed in a V-Ti-N medium-carbon steel containing MnS inclusions. Steel Res Int, 2017, 88(12): 1700133 doi: 10.1002/srin.201700133
    [41] Xiong Z H, Liu S L, Wang X M, et al. Relationship between crystallographic structure of the Ti2O3/MnS complex inclusion and microstructure in the heat-affected zone (HAZ) in steel processed by oxide metallurgy route and impact toughness. Mater Charact, 2015, 106: 232 doi: 10.1016/j.matchar.2015.06.001
    [42] Zhu L G, Wang Y, Wang S M, et al. Research of microalloy elements to induce intragranular acicular ferrite in shipbuilding steel. Ironmak Steelmak, 2019, 46(6): 499 doi: 10.1080/03019233.2017.1405153
    [43] Xu Y, Wu Y G, Zhang C J, et al. Precipitation and growth of inclusions in solidification process of steel. J Iron Steel Res Int, 2015, 22(9): 804 doi: 10.1016/S1006-706X(15)30074-1
    [44] Wu X Y, Xiao P C, Wu S J, et al. Effect of molybdenum on the impact toughness of heat-affected zone in high-strength low-alloy steel. Materials, 2021, 14(6): 1430 doi: 10.3390/ma14061430
    [45] Zhu L G, Wang Y, Wang S M, et al. Effect of microalloy elements V and Nb on induction of intragranular acicular ferrite. Iron Steel, 2019, 54(8): 216

    朱立光, 王雁, 王碩明, 等. 微合金元素釩和鈮對誘發針狀鐵素體的影響. 鋼鐵, 2019, 54(8):216
    [46] Cui Z M, Zhu L G, Li Y L, et al. Relationship between crystal structure of inclusions and formation of acicular ferrites. J Iron Steel Res Int, 2016, 23(6): 586 doi: 10.1016/S1006-706X(16)30092-9
  • 加載中
圖(4)
計量
  • 文章訪問數:  2312
  • HTML全文瀏覽量:  208
  • PDF下載量:  93
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-27
  • 網絡出版日期:  2022-03-30
  • 刊出日期:  2022-09-01

目錄

    /

    返回文章
    返回