Study of the catalytic denitrification activity of a modified steelmaking sludge catalyst
-
摘要: 選擇性催化還原技術是工業煙氣脫硝技術中最常用的煙氣脫硝方法。但催化劑的制備過程較為復雜,并且制備成本較高。本文以鋼鐵企業在生產過程中產生的煉鋼污泥作為原料,采用焙燒改性、硫酸改性和硫酸–焙燒改性三種不同方法對其進行處理,制備了一種用于選擇性催化還原氮氧化物的新型催化劑。采用比表面積分析法(BET)、掃描電鏡分析(SEM)、X射線衍射分析(XRD)、X射線熒光光譜分析(XRF)和NH3程序升溫脫附分析(NH3-TPD)等表征手段,對改性前后煉鋼污泥催化劑物理化學性質的變化進行分析研究。結果表明:催化劑的主要活性組分為Fe、Mn、V、Ti;焙燒改性對催化劑活性具有一定的提升效果,可以使催化劑中的Fe3O4轉化為具有更好脫硝活性的α-Fe2O3;硫酸改性后的催化劑具有優異的催化活性,300 °C時可以達到88.5%的脫硝效率;硫酸改性改變了催化劑表面形貌,減小了晶粒尺寸,生成了大量的硫酸鹽物種,給催化劑表面提供了更多酸性位點,從而促進催化性能的提升。該研究為低成本脫硝催化劑的開發提供了基礎,促進了冶金工業的清潔生產。Abstract: The most commonly used method for industrial flue gas denitrification is selective catalytic reduction (SCR). However, the catalyst preparation is complex and expensive. The iron and steel industry produces large amounts of waste containing metal oxides that can be used as active catalytic components for SCR of nitrogen oxides. In this study, a novel catalyst for SCR of nitrogen oxides was prepared by roasting, sulfuric acid, and sulfuric acid-roasting modification of steelmaking sludge, which is used as the raw material. The physical and chemical properties of the catalysts from steelmaking sludge before and after modification were analyzed using Brunauer-Emmett-Teller analysis, scanning electron microscopy, X-ray diffraction, X-ray fluorescence, and temperature-programmed desorption of ammonia. It has been revealed that Fe, Mn, V, and Ti are the main active groups of the catalyst. Calcination can transform Fe3O4 to α-Fe2O3 with better denitrification activity, thus improving the catalyst reactivity. A high calcination temperature can cause a collapse of the pore structure of the catalyst, thereby decreasing the surface area and active sites and ultimately reducing the catalytic activity. The catalyst modified at the optimum calcination temperature of 400 °C has the highest catalytic activity at 350 °C and a denitrification efficiency of 57.6%. The sulfuric acid-modified catalyst has excellent catalytic activity. Sulfuric acid impregnation changes the surface morphology of the catalyst, reduces the grain size, generates numerous sulfate species, provides more acidic sites on the catalyst surface, and promotes catalyst performance. The 9 mol·L?1 sulfuric acid-modified catalyst has the highest denitrification efficiency at 300 °C. Compared with the unmodified catalyst, the denitrification efficiency significantly increased from 22.9% to 88.5%. Conversely, a denitrification efficiency of 72.9% is measured for the catalyst modified by sulfuric acid and roasting modification, which is lower than that of the sulfuric acid-modified catalyst at 300 °C. This may be explained by the fact that sulfuric acid and roasting modification causes not only structural changes in the catalyst but also the decomposition of the generated sulfate species, thereby leading to catalytic efficiency reduction. This work shows a feasible preparation of a low-cost SCR catalyst for denitrification by roasting and acid modification using steelmaking sludge as the raw material, provides a theoretical basis for developing low-cost denitrification catalysts using metallurgical solid wastes and promotes clean production in the metallurgical industry.
-
表 1 催化劑元素分析結果(質量分數)
Table 1. Elemental analysis of the catalysts
% Sample Fe2O3 CaO MgO SiO2 ZnO Al2O3 MnO TiO2 V2O5 SOx Sum SS 69.84 19.42 4.16 1.53 1.20 0.56 0.27 0.13 0.11 0.56 97.78 SS-C-600 67.37 18.53 7.23 1.80 0.98 0.74 0.25 0.11 0.10 0.74 97.85 SS-A-5 58.70 15.29 3.32 1.25 0.86 0.40 0.23 0.12 0.10 18.24 98.50 SS-A-C 58.72 16.51 3.06 1.27 0.94 0.45 0.21 0.11 0.09 16.85 98.21 表 2 催化劑的BET分析結果
Table 2. BET analysis results of the catalysts
Sample SBET/(m2·g–1) Pore volume/(cm3·g–1) Pore size/nm SS 21 0.063181 11.946 SS-C-600 6 0.046535 32.981 SS-A-5 12 0.055125 18.165 SS-A-C 11 0.07672 26.777 表 3 催化劑的NH3脫附量(基于峰面積計算)
Table 3. NH3 desorption amounts of catalysts (based on peak area calculation)
Sample Weak acid sites (a.u.) Medium strong and strong
acid sites (a.u.)Total (a.u.) SS 86.87 241.82 328.69 SS-C-600 84.89 145.73 230.62 SS-A-5 113.08 284.70 397.78 SS-A-C 96.92 176.18 273.10 www.77susu.com -
參考文獻
[1] Li G L. Hazards of nitrogen oxides to the environment and pollution control technology. Shanxi Chem Ind, 2019, 39(5): 123 doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44李國亮. 氮氧化物對環境的危害及污染控制技術. 山西化工, 2019, 39(5):123 doi: 10.16525/j.cnki.cn14-1109/tq.2019.05.44 [2] Chen G B, Wan X, Yang G H, et al. Traffic-related air pollution and lung cancer: A meta-analysis. Thorac Cancer, 2015, 6(3): 307 [3] Goldstein E, Peek N F, Parks N J, et al. Fate and distribution of inhaled nitrogen dioxide in rhesus monkeys. Am Rev Respir Dis, 1977, 115(3): 403 [4] Lai J K, Wachs I. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5–WO3/TiO2 catalysts. ACS Catal, 2018, 8(7): 6537 doi: 10.1021/acscatal.8b01357 [5] Wang C, Qin R Y, Zhang X F, et al. Safe disposal of deactivated commercial selective catalytic reduction catalyst (V2O5–MoO3/TiO2) as a low-cost and regenerable sorbent to recover gaseous elemental mercury in smelting flue gas. J Hazard Mater, 2021, 406: 124744 [6] Zhang Q J, Wu Y F, Yuan H R. Recycling strategies of spent V2O5–WO3/TiO2 catalyst: A review. Resour Conserv Recycl, 2020, 161: 104983 [7] Husnain N, Li K, Anwar M, et al. Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3. Rev Chem Eng, 2018, 35(2): 239 [8] Zhang H L, Long H M, Li J X, et al. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3. Chin J Inorg Chem, 2019, 35(5): 753 doi: 10.11862/CJIC.2019.099張洪亮, 龍紅明, 李家新, 等. 鐵基催化劑用于氨選擇性催化還原氮氧化物研究進展. 無機化學學報, 2019, 35(5):753 doi: 10.11862/CJIC.2019.099 [9] Zhang J, Li X C, Chen P G, et al. Research status and prospect on vanadium-based catalysts for NH3-SCR denitration. Materials (Basel) , 2018, 11(9): 1632 doi: 10.3390/ma11091632 [10] Liu Z M, Su H, Chen B H, et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3. Chem Eng J, 2016, 299: 255 doi: 10.1016/j.cej.2016.04.100 [11] Gong Z G, Niu S, Zhang Y J, et al. Facile synthesis of porous α-Fe2O3 nanostructures from MIL-100(Fe) via sacrificial templating method, as efficient catalysts for NH3-SCR reaction. Mater Res Bull, 2020, 123: 110693 doi: 10.1016/j.materresbull.2019.110693 [12] Ciambelli P, Fortuna M E, Sannino D, et al. The influence of sulphate on the catalytic properties of V2O5–TiO2 and WO3–TiO2 in the reduction of nitric oxide with ammonia. Catal Today, 1996, 29(1-4): 161 [13] Chen W S, Zhang C G, Hu F L, et al. Study on denitrification performance of sinter catalyst modified by sulphate. Sinter Pelletizing, 2019, 44(5): 65 doi: 10.13403/j.sjqt.2019.05.079陳旺生, 張成剛, 胡發立, 等. 硫酸改性燒結礦催化劑脫硝性能研究. 燒結球團, 2019, 44(5):65 doi: 10.13403/j.sjqt.2019.05.079 [14] Lian Z H, Shan W P, Wang M, et al. The balance of acidity and redox capability over modified CeO2 catalyst for the selective catalytic reduction of NO with NH3. J Environ Sci, 2019, 79: 273 [15] Ye D, Wang X X, Liu H, et al. Insights into the effects of sulfate species on CuO/TiO2 catalysts for NH3-SCR reactions. Mol Catal, 2020, 496: 111191 doi: 10.1016/j.mcat.2020.111191 [16] Zhao Q S, Xiang J, Sun L S, et al. Adsorption and oxidation of NH3 and NO over sol-gel-derived CuO?CeO2?MnOx/γ-Al2O3 Catalysts. Energy &Fuels, 2009, 23(3): 1539 [17] Chang H Z, Chen X Y, Li J H, et al. Improvement of activity and SO2 tolerance of Sn-modified MnOx–CeO2 catalysts for NH3-SCR at low temperatures. Environ Sci &Technol, 2013, 47(10): 5294 [18] Giuliana M, Giuseppina C, Claudio M, et al. Structural and surface characterization of pure and sulfated iron oxides. Chem Mater, 2003, 15(3): 675 [19] Zhao L, Han J, Wu Y W, et al. Study on alkaline earth metal poisoning of vanadium-titanium based SCR denitration catalyst. Chem Ind Eng Prog, 2019, 38(3): 1419 doi: 10.16085/j.issn.1000-6613.2018-0676趙莉, 韓健, 吳洋文, 等. 釩鈦基SCR脫硝催化劑堿土金屬中毒. 化工進展, 2019, 38(3):1419 doi: 10.16085/j.issn.1000-6613.2018-0676 [20] Benson S A, Laumb J D, Crocker C R, et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals. Fuel Process Technol, 2005, 86(5): 577 [21] Xing Y, Zhang H, Su W, et al. Mineral-derived catalysts optimized for selective catalytic reduction of NOx with NH3. J Clean Prod, 2020, 289(1): 125756 [22] Jiang S Y, Zhou R X. Ce doping effect on performance of the Fe/β catalyst for NOx reduction by NH3. Fuel Process Technol, 2015, 133: 220 doi: 10.1016/j.fuproc.2015.02.004 [23] Zhang J, Huang Z W, Du Y Y, et al. Identification of active sites over Fe2O3-based architecture: The promotion effect of H2SO4 erosion synthetic protocol. ACS Appl Energy Mater, 2018, 1(6): 2385 doi: 10.1021/acsaem.8b00353 [24] Chen X, Gui K T, Gu S C. Catalytic denitration activity and sulfur resistance of modified siderite catalysts. J Fuel Chem Technol, 2019, 47(3): 370 doi: 10.3969/j.issn.0253-2409.2019.03.016陳鑫, 歸柯庭, 顧少宸. 改性菱鐵礦催化劑的催化脫硝活性及抗硫性研究. 燃料化學學報, 2019, 47(3):370 doi: 10.3969/j.issn.0253-2409.2019.03.016 [25] Du H, Han Z T, Wang Q M, et al. Effects of ferric and Manganese precursors on catalytic activity of Fe–Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environ Sci Pollut Res Int, 2020, 27(32): 40870 doi: 10.1007/s11356-020-10073-y [26] Xu T F, Wu X D, Liu X S, et al. Effect of Barium sulfate modification on the SO2 tolerance of V2O5/TiO2 catalyst for NH3-SCR reaction. J Environ Sci, 2017, 57: 110 [27] Liu F D, Shan W P, Lian Z H, et al. The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3. Appl Catal B Environ, 2018, 230: 165 doi: 10.1016/j.apcatb.2018.02.052 -