Mechanism analysis and type determination of the rockburst of the Gaoloushan tunnel based on a study of rockburst fragments
-
摘要: 在建高樓山隧道是通達隴南市及四川省九寨溝的控制性工程,項目具有“三高一大”的特點,是復雜地質條件下深埋特長公路隧道的典型代表。以現場兩種巖爆類型為研究對象,通過沖擊巖爆實驗系統并設定不同應力路徑,首先進行了巖爆實驗全過程分析,而后對比研究了板裂屈曲型巖爆實驗碎屑(巖爆碎屑1)、爆破沖擊型巖爆實驗碎屑(巖爆碎屑2)和現場收集的不知類型的巖爆碎屑(巖爆碎屑3)的質量、尺度分布及形狀分形維數特征。在此基礎上,結合巖爆實驗圖像變化過程,深化了對不同類型巖爆碎屑成因及巖爆機理的認識。結果表明:(1)板裂屈曲型巖爆和爆破沖擊型巖爆區別在于破壞主導機制不同,一種為張拉破壞主導,另一種為張剪破壞主導。(2)巖爆碎屑1以中粒、條板狀碎屑為主,在長度方向上更容易破碎,且質量遠大于巖爆碎屑2,這與豎向應力集中形成板裂化結構的板裂屈曲型巖爆孕育機制密不可分。(3)動載的介入使得巖爆碎屑2受剪切作用明顯,因而在厚度方向的破碎更容易且破碎程度更高,形成以粗粒、片狀碎屑為主的碎屑,該類型碎屑在現場巖爆中由于質量較大、體積較大、彈射距離較遠,因此危害性可能更大。(4)通過上述比對分析,可基本判定巖爆碎屑3對應的巖爆類型為爆破沖擊型,且片狀、“V”形特征碎屑為該類型巖爆特有的碎屑類型。Abstract: The Gaoloushan Tunnel is a control project for Longnan city and Jiuzhaigou, Sichuan Province. With the characteristics of "three high and one large," this project is a typical representative of a deeply buried, long highway tunnel under complex geological conditions. In this dissertation, two types of rockburst in the field are taken as the research objects. By impacting a rockburst experimental system and setting different stress paths, an image acquisition system recorded the entire process of impact rockburst and slab buckling rockburst in real time to analyze the characteristics of spalling and ejection. Rockburst due to static loading was performed and compared with rockburst caused by static loading + dynamic loading. Then, the quality, scale distribution, shape, and fractal dimension of slab buckling rockburst test fragments (rockburst fragments 1), impact rockburst test fragments (rockburst fragments 2), and unknown types of rockburst fragments (rockburst fragments 3) collected in the field were compared. On this basis, the image change process of the rockburst test was combined to deepen the understanding of the causes of different types of rockburst fragments and the rockburst mechanism. The results show that (1) slab-buckling rockburst and impact rockburst differ in the damage dominant mechanism, one being tension damage dominant, the other being tension-shear damage dominant. V-shaped and pan-shaped rockburst pit shapes are consistent with the on-site rockburst situation, which proves the rationality of this experiment. Slab-buckling rockburst has attenuation characteristics during the rockburst process, unlike the impact rockburst. From an analysis of debris ejection velocity and rockburst pit shape, impact rockburst is more severe than slab buckling rockburst. (2) Type 1 rockburst fragments are dominated by medium-grained slate fragments, which are more easily broken in the length direction and have a much larger mass than rockburst fragments 2, which is closely related to the incubation mechanism of slab buckling rockburst with a slabbing failure structure formed by vertical stress concentration. (3) Because of the intervention of dynamic load, type 2 rockburst fragments are obviously sheared, so they are easier and more broken in the thickness direction, forming fragments dominated by coarse-grained flake fragments, which may be more harmful because of their large mass, large volume, and long ejection distance in on-site rockburst. (4) The above comparison and analysis show that type 3 rockburst fragments probably correspond to impact rockburst, and the flaky and "V"-shaped characteristics are a unique fragment type of this rockburst.
-
圖 5 板裂屈曲型巖爆實驗過程圖像. (a) t = 0 s, σv = 0 MPa, σh = 0 MPa; (b) t = 320 s, σv = 22.4 MPa, σh = 28.1 MPa; (c) t = 713 s, σv = 52 MPa, σh = 28.1 MPa; (d) t = 777 s, σv = 57 MPa, σh = 28.1 MPa; (e) t = 1034 s, σv = 76.9 MPa, σh = 28.1 MPa; (f) t = 1081 s, σv = 80.8 MPa, σh = 28.1 MPa; (g) t = 1083 s, σv = 73.7 MPa, σh = 28.6 MPa; (h) t = 1084 s, σv = 70.2 MPa, σh = 28.5 MPa
Figure 5. Images of slab buckling rockburst test process: (a) t = 0 s, σv = 0 MPa, σh = 0 MPa; (b) t = 320 s, σv = 22.4 MPa, σh = 28.1 MPa; (c) t = 713 s, σv = 52 MPa, σh = 28.1 MPa; (d) t = 777 s, σv = 57 MPa, σh = 28.1 MPa; (e) t = 1034 s, σv = 76.9 MPa, σh = 28.1 MPa; (f) t = 1081 s, σv = 80.8 MPa, σh = 28.1 MPa; (g) t = 1083 s, σv = 73.7 MPa, σh = 28.6 MPa; (h) t = 1084 s, σv = 70.2 MPa, σh = 28.5 MPa
圖 7 爆破沖擊型巖爆實驗過程圖像. (a) t = 0 s, σv = 0 MPa, σh = 0 MPa; (b) t = 320 s, σv = 22.2 MPa, σh = 28.1 MPa; (c) t = 690 s, σv = 52.1 MPa, σh = 28.1 MPa; (d) t = 824 s, σv = 54 MPa, σh = 28.1 MPa; (e) t = 1009 s, σv = 56.1 MPa, σh = 28.1 MPa; (f) t = 1413 s, σv = 61.9 MPa, σh = 28.1 MPa; (g) t = 1575 s, σv = 63.6 MPa, σh = 28.1 MPa; (h) t = 2104 s, σv = 70.3 MPa, σh = 28.1 MPa; (i) t = 2114 s, σv = 70.1 MPa, σh = 28.1 MPa
Figure 7. Images of the impact rockburst test process: (a) t = 0 s, σv = 0 MPa, σh = 0 MPa;(b) t = 320 s, σv = 22.2 MPa, σh = 28.1 MPa; (c) t = 690 s, σv = 52.1 MPa, σh = 28.1 MPa; (d) t = 824 s, σv = 54 MPa, σh = 28.1 MPa; (e) t = 1009 s, σv = 56.1 MPa, σh = 28.1 MPa; (f) t = 1413 s, σv = 61.9 MPa, σh = 28.1 MPa; (g) t = 1575 s, σv = 63.6 MPa, σh = 28.1 MPa; (h) t = 2104 s, σv = 70.3 MPa, σh = 28.1 MPa; (i) t = 2114 s, σv = 70.1 MPa, σh = 28.1 MPa
表 1 X-射線衍射分析表
Table 1. X-ray diffraction analysis table
Mineral quality content/% Relative quality content of
clay minerals/%Quality ratio of the mixed layer/% Quartz K-feldspar Plagioclase Calcite Pyrite Clay minerals S I/S I K C C/S I/S C/S 78.2 — 2.3 17.8 — 1.7 — — 72 — 28 — — — Notes:S is Monazite category; I/S is Illite-Montmorillonite mixed-layer; I is Illite; K is kaolinite; C is Chlorite; C/S is Chlorite-Montmorillonite mixed-layer. 表 2 巖爆碎屑1、2質量分布及質量占比分布表
Table 2. Quality distribution and quality proportion distribution table of rockburst fragments 1 and 2
Fragment name Fragment interval/mm Rockburst fragment type 1 Rockburst fragment type 2 Quality/g Quality percentage/% Quality/g Quality percentage/% Micro-grained fragment <0.075 4.3 1.67 1.7 1.17 Fine-grained fragment 0.075–0.25 9.1 3.52 3.3 2.27 0.25–0.5 8.3 3.21 3.0 2.06 0.5–1 14.6 5.65 4.2 2.89 1–2 11.2 4.34 3.7 2.55 2–5 46.9 18.16 19.1 13.15 Medium-grained fragment 5–10 72.3 28.00 27.3 18.79 10–30 70.3 27.23 16.0 11.01 Coarse-grained fragment >30 21.2 8.21 67.0 46.11 Total 258.2 100 145.3 100 表 3 巖爆碎屑3質量分布及質量占比分布表
Table 3. Quality distribution and quality proportion distribution table of rockburst fragment type 3
Fragment name Fragment interval/mm Rockburst fragment type 3 Quality/g Quality percentage/% Micro-grained fragment 10–30 6 0.05 30–50 74 0.59 Fine-grained fragment 50–100 104 0.83 100–150 267 2.12 150–200 1597 12.71 Medium-grained fragment 200–250 1275 10.14 250–300 2644 21.04 Coarse-grained fragment >300 4453 35.43 Total 12569 100 表 4 巖爆碎屑1、2、3體積特征統計
Table 4. Volume characteristics of medium/coarse grain in rockburst fragment types 1, 2, and 3
Type Number of sampling statistics Length/Thickness Length/Width Width/Thickness Vmin–Vmax Vave/δ Vmin–Vmax Vave/δ Vmin–Vmax Vave/δ Rockburst fragment type 1 (Medium/coarse grain) 50 1.47–7.47 3.96/1.86 1.01–3.56 1.82/0.45 1.06–6.79 2.36/1.03 Rockburst fragment type 2 (Medium/coarse grain) 50 1.65–20.01 4.85/13.74 1.04–5.01 1.65/0.52 0.88–8.44 3.00/2.59 Rockburst fragment type 3 30 2.05–11.00 5.57/4.18 1.07–2.91 1.68/0.22 1.16–9.50 3.56/2.83 表 5 巖爆碎屑1、2、3分形維數匯總表
Table 5. Summary of fractal dimensions of rockburst fragment types 1, 2, and 3
Experiment number Rockburst fragment type 1 Rockburst fragment type 2 Rockburst fragment type 3 Granularity–
Quantity2.055 1.935 1.851 Granularity–
Quality2.751 2.698 2.667 Length–
Quantity1.589 1.749 1.019 Thickness–
Quantity1.741 1.338 0.898 Width–
Quantity2.141 2.019 0.961 www.77susu.com -
參考文獻
[1] He M C, Liu D Q, Gong W L, et al. Development of a testing system for impact rockbursts. Chin J Rock Mech Eng, 2014, 33(9): 1729何滿潮, 劉冬橋, 宮偉力, 等. 沖擊巖爆試驗系統研發及試驗. 巖石力學與工程學報, 2014, 33(9):1729 [2] Cai M. Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—Insight from numerical modeling. Int J Rock Mech Min Sci, 2008, 45(5): 763 doi: 10.1016/j.ijrmms.2007.07.026 [3] Du K, Tao M, Li X B, et al. Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance. Rock Mech Rock Eng, 2016, 49(9): 3437 doi: 10.1007/s00603-016-0990-4 [4] Ortlepp W D. The behaviour of tunnels at great depth under large static and dynamic pressures. Tunn Undergr Space Technol, 2001, 16(1): 41 doi: 10.1016/S0886-7798(01)00029-3 [5] Liu D Q, He M C, Wang C C, et al. Experimental study on rock burst induced by dynamic load. J China Coal Soc, 2016, 41(5): 1099劉冬橋, 何滿潮, 汪承超, 等. 動載誘發沖擊地壓的實驗研究. 煤炭學報, 2016, 41(5):1099 [6] Liu D Q, Wang Y, Hu X X, et al. Calculation and test analysis on stress of surrounding rock in mine roadway with mine pressure bump occurred by dynamic load. Coal Sci Technol, 2015, 43(9): 42劉冬橋, 王煬, 胡祥星, 等. 動載誘發沖擊地壓巷道圍巖應力計算與試驗分析. 煤炭科學技術, 2015, 43(9):42 [7] Gong F Q, Luo Y, Li X B, et al. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels. Tunn Undergr Space Technol, 2018, 81: 413 doi: 10.1016/j.tust.2018.07.035 [8] Gong F Q, Luo Y, Liu D Q. Simulation tests on spalling failure in deep straight-wall-top-arch tunnels. Chin J Geotech Eng, 2019, 41(6): 1091宮鳳強, 羅勇, 劉冬橋. 深部直墻拱形隧洞圍巖板裂破壞的模擬試驗研究. 巖土工程學報, 2019, 41(6):1091 [9] Gong F Q, Wu W X, Li T B, et al. Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock. Rock Soil Mech, 2019, 40(6): 2085宮鳳強, 伍武星, 李天斌, 等. 深部硬巖矩形隧洞圍巖板裂破壞的試驗模擬研究. 巖土力學, 2019, 40(6):2085 [10] Gong F Q, Si X F, Li X B, et al. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions. Rock Mech Rock Eng, 2019, 52(5): 1459 doi: 10.1007/s00603-018-1660-5 [11] Wang Y, He M C, Liu D Q, et al. Rockburst in sandstone containing elliptic holes with varying axial ratios. Adv Mater Sci Eng, 2019, 2019: 5169618 [12] Wang Y, Chun Z, He M C, et al. Fragmentation characteristics analysis of sandstone fragments for impact rockburst under different dynamic loading frequency. Geotech Geol Eng, 2019, 37(4): 2715 doi: 10.1007/s10706-018-00789-7 [13] Zhou H, Xu R C, Lu J J, et al. Study on mechanisms and physical simulation experiment of slab buckling rockburst in deep tunnel. Chin J Rock Mech Eng, 2015, 34(Suppl 2): 3658周輝, 徐榮超, 盧景景, 等. 深埋隧洞板裂屈曲巖爆機制及物理模擬試驗研究. 巖石力學與工程學報, 2015, 34(增刊2): 3658 [14] Liu D Q, Zhang X Y, He M C, et al. Study on sandstone fragments from impact rockburst experiments. J Min Sci Technol, 2018, 3(3): 246劉冬橋, 張曉云, 何滿潮, 等. 砂巖沖擊巖爆實驗碎屑研究. 礦業科學學報, 2018, 3(3):246 [15] Lin M Q, Zhang D J, Pan D, et al. Research on rock burst evolution and micromechanics analysis of phosphate fragments from rock burst. Ind Miner Process, 2017, 46(5): 34吝曼卿, 張電吉, 潘登, 等. 磷塊巖的巖爆碎屑細觀分析與巖爆演化研究. 化工礦物與加工, 2017, 46(5):34 [16] Ren F Q, Chang Y, Wang D, et al. Fractal characteristics of fragments generated from rockburst test on slate taken from Jining. J Yangtze River Sci Res Inst, 2016, 33(10): 102任富強, 常遠, 汪東, 等. 集寧板巖巖爆碎屑分形特征分析. 長江科學院院報, 2016, 33(10):102 [17] Zhang Y Q, Zhou Z H, Jin X C, et al. Research on failure characteristics of dolomite fragments under static-dynamic coupling loading. Min Res Dev, 2014, 34(7): 54章雅琦, 周宗紅, 金小川, 等. 動靜組合加載下白云巖碎屑破壞特征研究. 礦業研究與開發, 2014, 34(7):54 [18] Xie H P, Pariseau W G. Fractal character and mechanism of rock burst. Chin J Rock Mech Eng, 1993, 12(1): 28謝和平, Pariseau W G. 巖爆的分形特征和機理. 巖石力學與工程學報, 1993, 12(1):28 [19] Li D J, Jia X N, Miao J L, et al. Analysis of fractal characteristics of fragment from rockburst test of granite. Chin J Rock Mech Eng, 2010, 29(Suppl 1): 3280李德建, 賈雪娜, 苗金麗, 等. 花崗巖巖爆試驗碎屑分形特征分析. 巖石力學與工程學報, 2010, 29(S1): 3280 [20] Zhao F, He M C, Li D J, et al. Damage evolution in the fracture process of coal burst during true traxial unloading test. Chin J Undergr Space Eng, 2019, 15(1): 142趙菲, 何滿潮, 李德建, 等. 真三軸卸載煤爆實驗破壞特征演化分析. 地下空間與工程學報, 2019, 15(1):142 [21] Xia Y Y, Lin M Q, Liao L L, et al. Fractal characteristic analysis of fragments from rockburst tests of large-diameter specimens. Chin J Rock Mech Eng, 2014, 33(7): 1358夏元友, 吝曼卿, 廖璐璐, 等. 大尺寸試件巖爆試驗碎屑分形特征分析. 巖石力學與工程學報, 2014, 33(7):1358 [22] Xu J Y, Liu S. Research on fractal characteristics of marble fragments subjected to impact loading. Rock Soil Mech, 2012, 33(11): 3225許金余, 劉石. 大理巖沖擊加載試驗碎塊的分形特征分析. 巖土力學, 2012, 33(11):3225 [23] Du J, Li X B, Gong F Q, et al. Classification and fractal characteristics of the fragments from impacting experiment of rock. Min Res Dev, 2010, 30(5): 20杜晶, 李夕兵, 宮鳳強, 等. 巖石沖擊實驗碎屑分類及其分形特征. 礦業研究與開發, 2010, 30(5):20 [24] Yao Z B, Niu W J, Zhang Y, et al. Development and application of a rockburst database management system. Chin J Eng, 2022, 44(5): 865姚志賓, 牛文靜, 張宇, 等. 巖爆數據庫管理系統開發及應用. 工程科學學報, 2022, 44(5):865 [25] He M C. Experimental Mechanics of Strain Rockburst. Beijing: Science Press, 2020何滿潮. 應變巖爆實驗力學. 北京: 科學出版社, 2020 [26] Shan X Y, Li Z J. Fractal theory, characteristics and its application on rock fragmentation. J Hebei Inst Technol, 2003, 25(2): 11單曉云, 李占金. 分形理論和巖石破碎的分形研究. 河北理工學院學報, 2003, 25(2):11 [27] He M C, Wang Y, Su J S, et al. Analysis of fractal characteristics of fragment of sandstone impact rock burst under static and dynamic coupled loads. J China Univ Min Technol, 2018, 47(4): 699何滿潮, 王煬, 蘇勁松, 等. 動靜組合荷載下砂巖沖擊巖爆碎屑分形特征. 中國礦業大學學報, 2018, 47(4):699 -