<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

廢覆銅板分選殘渣生物脫毒工藝優化及機理

仉麗娟 李雨欣 范越 任凌霄 王慧雅 王藝 丁克強 周洪波

仉麗娟, 李雨欣, 范越, 任凌霄, 王慧雅, 王藝, 丁克強, 周洪波. 廢覆銅板分選殘渣生物脫毒工藝優化及機理[J]. 工程科學學報, 2023, 45(2): 223-233. doi: 10.13374/j.issn2095-9389.2021.12.03.005
引用本文: 仉麗娟, 李雨欣, 范越, 任凌霄, 王慧雅, 王藝, 丁克強, 周洪波. 廢覆銅板分選殘渣生物脫毒工藝優化及機理[J]. 工程科學學報, 2023, 45(2): 223-233. doi: 10.13374/j.issn2095-9389.2021.12.03.005
ZHANG Li-juan, LI Yu-xin, FAN Yue, REN Ling-xiao, WANG Hui-ya, WANG Yi, DING Ke-qiang, ZHOU Hong-bo. Cu extraction from waste copper clad laminate sorting residue in a two-stage bioleaching process: Process optimization and mechanism[J]. Chinese Journal of Engineering, 2023, 45(2): 223-233. doi: 10.13374/j.issn2095-9389.2021.12.03.005
Citation: ZHANG Li-juan, LI Yu-xin, FAN Yue, REN Ling-xiao, WANG Hui-ya, WANG Yi, DING Ke-qiang, ZHOU Hong-bo. Cu extraction from waste copper clad laminate sorting residue in a two-stage bioleaching process: Process optimization and mechanism[J]. Chinese Journal of Engineering, 2023, 45(2): 223-233. doi: 10.13374/j.issn2095-9389.2021.12.03.005

廢覆銅板分選殘渣生物脫毒工藝優化及機理

doi: 10.13374/j.issn2095-9389.2021.12.03.005
基金項目: 江蘇省科技廳青年基金資助項目(BK20210934);南京工程學院高層次引進人才科研啟動基金資助項目(YKJ202001);江蘇省大學生創新訓練計劃重點資助項目(202111276014Z,202211276023Z);江蘇省雙創博士人才計劃資助項目(JSSCBS20210595)
詳細信息
    通訊作者:

    E-mail: zhouhb@csu.edu.cn

  • 中圖分類號: TG142.71

Cu extraction from waste copper clad laminate sorting residue in a two-stage bioleaching process: Process optimization and mechanism

More Information
  • 摘要: 廢覆銅板分選殘渣量大,殘留銅質量分數約為1%,潛在利用價值高。為了獲得廢覆銅板分選殘渣生物浸出脫毒工藝最優條件及探明其生物浸出相關機理,首先采用Box?Behnken響應曲面法設計三因素(參數因子包括初始pH值、固形物含量和Fe2+濃度;響應值為銅浸出率)三水平共計17個實驗的優化實驗方案。響應面多項回歸擬合分析指出:銅浸出率回歸模型與實際試驗擬合性較好,實驗誤差較小,對廢覆銅板分選殘渣中銅生物浸出過程優化具有一定參考性。在最優化條件下(初始pH值為 1.65、廢覆銅板分選殘渣投加量300 g·L?1和Fe2+質量濃度為6.13 g·L?1)經過4 h生物浸出獲得(92.2±0.27)%的銅浸出率。其次,廢覆銅板殘渣生物浸出脫毒放大改進實驗中(100 L攪拌槽):增加曝氣和攪拌,同時外加酸調控體系pH值<2.5,延長浸出至6 h,銅最大浸出率>98%,浸出渣中銅殘留質量分數≤0.02%。未反應縮核動力學模型顯示殘渣中銅生物浸出過程受界面傳質和固體膜層內擴散混合控制。綜上所述,廢覆銅板分選殘渣中的銅主要通過Fe3+氧化和H+攻擊溶出;嗜酸氧化亞鐵微生物持續氧化Fe2+→Fe3+,不僅降低了總鐵消耗量,也促進了殘渣中銅的釋放。研究結果將為廢舊電子電器綠色資源化再生利用提供理論支撐。

     

  • 圖  1  廢覆銅板分選殘渣XRD分析

    Figure  1.  XRD analysis of dry waste copper clad laminate sorting residue

    圖  2  100 L攪拌槽反應裝置示意圖

    Figure  2.  Schematic diagram of the 100 L stirred tank

    圖  3  實際銅浸出率與Box?Behnken響應面數學模型預測值對照圖

    Figure  3.  Comparison between an actual copper extraction and the predicted value of the Box?Behnken response surface model

    圖  4  不同因素之間交互作用對銅浸出率的影響.(a)初始pH與固形物含量;(b)初始pH與Fe2+質量濃度;(c)固形物含量與Fe2+質量濃度

    Figure  4.  Effects of interactions between different factors on copper recovery: (a) initial pH and Fe2+ concentration; (b) initial pH and pulp density; (c) Fe2+ concentration and pulp density

    圖  5  100 L攪拌體系中不同理化參數隨時間的變化情況. (a)銅浸出率;(b)pH和氧化還原電位;(c)Fe3+和Fe2+質量濃度;(d)菌濃

    Figure  5.  Variations in different physical and chemical parameters with time in the 100 L stirred tank: (a) copper extraction; (b) pH value and redox potential; (c) concentration of Fe3+ and Fe2+; (d) cell density

    圖  6  100 L攪拌體系中,銅浸出隨時間變化不同浸出動力學模型擬合結果. (a) 固體膜層內擴散控制;(b) 化學反應控制;(c) 界面傳質和固體膜層擴散混合控制

    Figure  6.  Bioleaching kinetics of Cu recovery during bioleaching in the stirred tank: (a) diffusion model;(b) reaction model; (c) mixed-control model

    圖  7  廢覆銅板分選殘渣中銅生物浸出機理

    Figure  7.  Mechanisms of Cu extraction from waste copper clad laminate sorting residue by bioleaching with a ferrous-energy enriched microbial consortium

    表  1  廢覆銅板分選殘渣主要成分分析

    Table  1.   Main components of dry waste copper clad laminate sorting residue

    SnFeCaNaAlZnMgMnCrAuCuNiCoAg
    0.0500.4106.5100.1403.5300.0250.2300.0100.007<0.0100.7500.0040.0020.002
    下載: 導出CSV

    表  2  Box?Behnken Design響應面實驗因素及水平值設置

    Table  2.   Factor codes and levels of Box?Behnken design

    ValuepHPulp density/(g·L?1)Fe2+ concentration/(g·L?1)
    Low value1.52503
    High value2.13507
    下載: 導出CSV

    表  3  Box?Behnken實驗設計及銅浸出率

    Table  3.   Experimental design and copper recovery of Box?Behnken design

    RunpHPulp density/
    ( g·L?1)
    Fe2+ concentration/
    (g·L?1)
    Cu recovery/%
    11.8300591.57
    21.5300389.32
    32.1300788.19
    42.1300382.00
    51.5300791.29
    61.8350789.34
    71.8300590.44
    81.8300590.44
    91.5350591.03
    101.5250588.95
    112.1350586.20
    121.8300591.01
    131.8250791.65
    142.1250586.93
    151.8300589.32
    161.8350384.76
    171.8250388.28
    Note: In the software calculation of Design-Expert 8.0, the value of pulp density used the percentage of waste copper clad laminate sorting residue dosage/leaching solution volume.
    下載: 導出CSV

    表  4  回歸模型方差分析

    Table  4.   Analysis of variance for the regression model

    SourceSum of squaresDegrees of freedomMean squareP valueSignificance
    Model100.64911.180.0081**
    A?pH37.28137.280.0017**
    B?pulp density2.5112.510.2436
    C?Fe2+ concentration32.44132.440.0025**
    AB1.9711.970.2959
    AC4.4514.450.1337
    BC0.3710.370.6416
    A210.02110.020.0384*
    B22.2812.280.2644
    C27.2617.260.067
    Residual10.8371.55
    Lack of Fit8.0432.680.1131
    Pure Error2.7940.7
    Cor Total111.4716   
    Notes:* represents that difference is significant at the 0.05 level (P<0.05); ** represents that difference is significant at the 0.01 level (P<0.01).
    下載: 導出CSV

    表  5  浸出渣浸出毒性鑒定

    Table  5.   Identi?cation of the leaching toxicity of the leached residue

    MetalTest value by HJ/T 300/(mg·L?1)Limited value in GB16889—2008/
    (mg·L?1)
    Test value by HJ/T 299/
    (mg·L?1)
    Limited value in GB 5085.3—2007/
    (mg·L?1)
    Cu14.76400.174100
    Zn5.511000.00167100
    Ni0.1570.50.10315
    Cr0.06164.50.30412
    Ag0.006915
    Pb0.0010.250.3005
    Sn0.0010.30.0012.5
    Hg0.0010.050.000990.25
    Cd0.001620.150.030.5
    Ba0.43251.7150
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xiang Y, Du J W, Wen Y, et al. Utilization technology of flotation tailings of waste copper-clad plate // The 2th Assessment of Heavy Metal Pollution Prevention and Control Technology and Assessment, and the First Annual Meeting of Heavy Metal Pollution Prevention Professional Committee. Wuhan, 2012: 456

    項赟, 杜建偉, 溫勇, 等. 廢覆銅板濕法分選殘渣資源化利用技術 // 第二屆重金屬污染防治技術及風險評價研討會暨重金屬污染防治專業委會2012年首屆學術年會. 武漢, 2012: 456
    [2] Cui J R, Zhang L F. Metallurgical recovery of metals from electronic waste: A review. J Hazard Mater, 2008, 158(2-3): 228 doi: 10.1016/j.jhazmat.2008.02.001
    [3] Su R J, Liang B, Guan J. Leaching effects of metal from electroplating sludge under phosphate participation in hydrochloric acid medium. Procedia Environ Sci, 2016, 31: 361 doi: 10.1016/j.proenv.2016.02.048
    [4] Li P P, Peng C S, Li F M, et al. Copper and nickel recovery from electroplating sludge by the process of acid-leaching and electro-depositing. Int J Environ Res, 2011, 5(3): 797
    [5] Silva J E D, Soares D, Paiva A P, et al. Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media. J Hazard Mater, 2005, 121(1-3): 195 doi: 10.1016/j.jhazmat.2005.02.008
    [6] ?zba? E E, G?k?e C E, Güneysu S, et al. Comparative metal (Cu, Ni, Zn, total Cr, and Fe) removal from galvanic sludge by molasses hydrolysate. J Chem Technol Biotechnol, 2013: 2046
    [7] Cheng J H, Chen X, Kong F, et al. Recovery of Copper and Nickel from electroplating sludge by ammonia leaching and hydrogen reduction under high pressure. Environ Sci Technol, 2010, 33(6E): 135

    程潔紅, 陳嫻, 孔峰, 等. 氨浸-加壓氫還原法回收電鍍污泥中的銅和鎳. 環境科學與技術, 2010, 33(6E):135
    [8] Chen X, Lu J, Yin Y, et al. Roasting pretreatment of electroplating sludge and its leaching kinetics. Electroplat &Pollut Control, 2014, 34(3): 43 doi: 10.3969/j.issn.1000-4742.2014.03.015

    陳嫻, 陸金, 殷燕, 等. 電鍍污泥的焙燒預處理及其浸出動力學. 電鍍與環保, 2014, 34(3):43 doi: 10.3969/j.issn.1000-4742.2014.03.015
    [9] Baniasadi M, Vakilchap F, Bahaloo-Horeh N, et al. Advances in bioleaching as a sustainable method for metal recovery from e-waste: A review. J Ind Eng Chem, 2019, 76: 75 doi: 10.1016/j.jiec.2019.03.047
    [10] Johnson D B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol, 2014, 30: 24 doi: 10.1016/j.copbio.2014.04.008
    [11] Srichandan H, Mohapatra R K, Singh P K, et al. Column bioleaching applications, process development, mechanism, parametric effect and modelling: A review. J Ind Eng Chem, 2020, 90: 1 doi: 10.1016/j.jiec.2020.07.012
    [12] Kaksonen A H, Lakaniemi A M, Tuovinen O H. Acid and ferric sulfate bioleaching of uranium ores: A review. J Clean Prod, 2020, 264: 121586 doi: 10.1016/j.jclepro.2020.121586
    [13] Potysz A, van Hullebusch E D, Kierczak J. Perspectives regarding the use of metallurgical slags as secondary metal resources – A review of bioleaching approaches. J Environ Manag, 2018, 219: 138 doi: 10.1016/j.jenvman.2018.04.083
    [14] Xu Y, Zhang C S, Zhao M H, et al. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Chemosphere, 2017, 168: 1152 doi: 10.1016/j.chemosphere.2016.10.086
    [15] Waghmode M, Gunjal A, Patil N. Bioleaching of electronic waste. Pollution, 2021, 7(1): 141
    [16] Chu H C, Qian C, Tian B Y, et al. Pyrometallurgy coupling bioleaching for recycling of waste printed circuit boards. Resour Conserv Recycl, 2022, 178: 106018 doi: 10.1016/j.resconrec.2021.106018
    [17] Pathak A, Kothari R, Vinoba M, et al. Fungal bioleaching of metals from refinery spent catalysts: A critical review of current research, challenges, and future directions. J Environ Manage, 2021, 280: 111789 doi: 10.1016/j.jenvman.2020.111789
    [18] Levett A, Gleeson S A, Kallmeyer J. From exploration to remediation: A microbial perspective for innovation in mining. Earth Sci Rev, 2021, 216: 103563 doi: 10.1016/j.earscirev.2021.103563
    [19] Tay S B, Natarajan G, Rahim M N, et al. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum. Sci Rep, 2013, 3: 2236 doi: 10.1038/srep02236
    [20] Zhou J, Zheng G Y, Wong J W C, et al. Degradation of inhibitory substances in sludge by Galactomyces sp. Z3 and the role of its extracellular polymeric substances in improving bioleaching. Bioresour Technol, 2013, 132: 217
    [21] Arwidsson Z, Allard B. Remediation of metal-contaminated soil by organic metabolites from fungi II—Metal redistribution. Water Air Soil Pollut, 2010, 207(1): 5
    [22] Jadhav U, Hocheng H. Extraction of silver from spent silver oxide–zinc button cells by using Acidithiobacillus ferrooxidans culture supernatant. J Clean Prod, 2013, 44: 39 doi: 10.1016/j.jclepro.2012.11.035
    [23] Pourhossein F, Mousavi S M, Beolchini F, et al. Novel green hybrid acidic-cyanide bioleaching applied for high recovery of precious and critical metals from spent light emitting diode lamps. J Clean Prod, 2021, 298: 126714 doi: 10.1016/j.jclepro.2021.126714
    [24] Rastegar S O, Mousavi S M, Shojaosadati S A. Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans. Bioresour Technol, 2014, 167: 61 doi: 10.1016/j.biortech.2014.05.107
    [25] Yang Y R, Liu X C, Wang J, et al. Screening bioleaching systems and operational conditions for optimal Ni recovery from dry electroplating sludge and exploration of the leaching mechanisms involved. Geomicrobiol J, 2016, 33(3-4): 179 doi: 10.1080/01490451.2015.1068888
    [26] Zhang L J, Liu X W, Kang X, et al. High extraction of copper from flotation tailings of waste copper-clad laminates by acidophilic iron-oxidizing enrichment. Chin J Nonferrous Met, 2015, 25(10): 2936 doi: 10.19476/j.ysxb.1004.0609.2015.10.034

    仉麗娟, 劉曉文, 康鑫, 等. 嗜酸鐵氧化富集物高效浸提廢覆銅板分選殘渣中的銅. 中國有色金屬學報, 2015, 25(10):2936 doi: 10.19476/j.ysxb.1004.0609.2015.10.034
    [27] Zhou W B, Chen Y Z, Cheng H N, et al. A novel process for the biological detoxification of non-metal residue from waste copper clad laminate treatment: From lab to pilot scale. J Clean Prod, 2020, 255: 120116 doi: 10.1016/j.jclepro.2020.120116
    [28] Silverman M P, Lundgren D G. Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol, 1959, 77(5): 642
    [29] Nikfar S, Parsa A, Bahaloo-Horeh N, et al. Enhanced bioleaching of Cr and Ni from a chromium-rich electroplating sludge using the filtrated culture of Aspergillus niger. J Clean Prod, 2020, 264: 121622 doi: 10.1016/j.jclepro.2020.121622
    [30] Dickinson C F, Heal G R. Solid-liquid diffusion controlled rate equations. Thermochimica Acta, 1999, 340-341: 89 doi: 10.1016/S0040-6031(99)00256-7
    [31] Goto M, Roy B C, Hirose T. Shrinking-core leaching model for supercritical-fluid extraction. J Supercrit Fluids, 1996, 9(2): 128 doi: 10.1016/S0896-8446(96)90009-1
    [32] Safari V, Arzpeyma G, Rashchi F, et al. A shrinking particle—Shrinking core model for leaching of a zinc ore containing silica. Int J Miner Process, 2009, 93(1): 79 doi: 10.1016/j.minpro.2009.06.003
    [33] Chen S, Yang Y K, Liu C Q, et al. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere, 2015, 141: 162 doi: 10.1016/j.chemosphere.2015.06.082
    [34] Rastegar S O, Mousavi S M, Shojaosadati S A, et al. Bioleaching of V, Ni, and Cu from residual produced in oil fired furnaces using Acidithiobacillus ferrooxidans. Hydrometallurgy, 2015, 157: 50 doi: 10.1016/j.hydromet.2015.07.006
    [35] Bing?l D, Canbazo?lu M, Aydo?an S. Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching. Hydrometallurgy, 2005, 76(1-2): 55 doi: 10.1016/j.hydromet.2004.09.006
  • 加載中
圖(7) / 表(5)
計量
  • 文章訪問數:  464
  • HTML全文瀏覽量:  189
  • PDF下載量:  66
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-03
  • 網絡出版日期:  2022-05-05
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回