<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

工業場景下基于深度學習的時序預測方法及應用

李瀟睿 班曉娟 袁兆麟 喬浩然

李瀟睿, 班曉娟, 袁兆麟, 喬浩然. 工業場景下基于深度學習的時序預測方法及應用[J]. 工程科學學報, 2022, 44(4): 757-766. doi: 10.13374/j.issn2095-9389.2021.12.02.004
引用本文: 李瀟睿, 班曉娟, 袁兆麟, 喬浩然. 工業場景下基于深度學習的時序預測方法及應用[J]. 工程科學學報, 2022, 44(4): 757-766. doi: 10.13374/j.issn2095-9389.2021.12.02.004
LI Xiao-rui, BAN Xiao-juan, YUAN Zhao-lin, QIAO Hao-ran. Review on deep learning models for time series forecasting in industry[J]. Chinese Journal of Engineering, 2022, 44(4): 757-766. doi: 10.13374/j.issn2095-9389.2021.12.02.004
Citation: LI Xiao-rui, BAN Xiao-juan, YUAN Zhao-lin, QIAO Hao-ran. Review on deep learning models for time series forecasting in industry[J]. Chinese Journal of Engineering, 2022, 44(4): 757-766. doi: 10.13374/j.issn2095-9389.2021.12.02.004

工業場景下基于深度學習的時序預測方法及應用

doi: 10.13374/j.issn2095-9389.2021.12.02.004
基金項目: 國家重點研發計劃資助項目(2019YFC0605300);國家自然科學基金資助項目(61873299);中央高校基本科研業務費資助項目(FRF-TP-20-061A1Z);佛山市科技創新專項資金資助項目(BK20AF001,BK21BF002);北京科技大學順德研究生院博士后科研經費資助項目(2021BH002,2021BH005)
詳細信息
    通訊作者:

    E-mail: banxj@ustb.edu.cn

  • 中圖分類號: TP391.9

Review on deep learning models for time series forecasting in industry

More Information
  • 摘要: 為了系統性地歸納工業場景下時序預測方法及應用,首先介紹了統計學習、集成學習、深度學習三類時序預測算法,并圍繞工業數據分析與決策問題,重點分析了循環神經網絡、卷積神經網絡、編碼?解碼器模型三類深度學習模型的優缺點及適用的工業應用場景。為了清晰全面地評估模型性能,介紹了面向點預測、序列預測問題的統計指標和誤差計算方法。同時,整理了經典的公開工業數據集,以便研究者快速評估算法性能。并以過程工業中的采礦、冶金為例,介紹了時序預測方法在真實工業場景下的應用和效果。最后,總結了工業領域中應用深度學習技術所面臨的低穩健性和弱可解釋性等問題,并探討了工業場景下時序預測方法研究的未來發展方向。

     

  • 圖  1  工業生產優化的技術路線

    Figure  1.  Technical route of industrial production optimization

    表  1  時間序列預測算法對比

    Table  1.   Comparison of time series forecasting algorithms

    MethodInterpretabilityDesign difficultyEfficiencyApplicable scenario
    Statistical AlgorithmsHighEasyLowStationary random process
    Ensemble LearningMiddleHardHighExperienced experts
    Deep LearningLowMiddleHighThe predicted system has complex nonlinearity and sufficient data
    下載: 導出CSV

    表  2  指標定義

    Table  2.   Definitions of the mathematical metrics

    Metric nameFormula Metric nameFormula
    Mean squared error, MSE$ \text{MSE}=\dfrac{1}{n}\sum\limits _{i=1}^{n}{e}_{i}{}^{2} $ Mean absolute error, MAE$ \text{MAE}=\dfrac{1}{n}\sum\limits _{i=1}^{n}\left|{e}_{i}\right| $
    Normalized quantile error$ {Q_\rho } = \dfrac{{\sum\limits_{i = 1}^n {2\left( {\rho {e_{i;}}_{{P_i} > {A_i}} - (1 - \rho ){e_{i;{P_i} \leqslant {A_i}}}} \right)} }}{{\sum\limits_{i = 1}^n {{A_i}} }} $R-squared$ {R^{\text{2}}} = \left( {1 - \dfrac{{\sum\limits_{i = 1}^n {{e_i}^2} }}{{\sum\limits_{i = 1}^n {{{({A_i} - \overline A )}^2}} }}} \right) \times 100\% $
    Mean absolute scaled error, MASE$ \begin{array}{l}\text{MASE}=\text{MAE}/Q\text{ where}\\ Q=\dfrac{1}{n-1}\sum\limits _{i=2}^{n}\left|{A}_{i}-{A}_{i-1}\right|\end{array} $Pearson correlation coefficient$ \begin{gathered} {r_{xy}} = \frac{{\sum\limits_{i = 1}^n {({X_i} - \bar X)({Y_i} - \bar Y)} }}{{\left( {\sqrt {\sum\limits_{i = 1}^n {{{\left( {{X_i} - \bar X} \right)}^2}} } } \right)\left( {\sqrt {\sum\limits_{i = 1}^n {{{\left( {{Y_i} - \bar Y} \right)}^2}} } } \right)}} \\ = \frac{{\sum\limits_{i = 1}^n {({A_i} - \overline A )} ({P_i} - \overline P )}}{{\left( {\sqrt {\sum\limits_{i = 1}^n {{{\left( {{A_i} - \overline A } \right)}^2}} } } \right)\left( {\sqrt {\sum\limits_{i = 1}^n {{{\left( {{P_i} - \overline P } \right)}^2}} } } \right)}} \\ \end{gathered} $
    Mean absolute percentage error, MAPE$ \text{MAPE}=\dfrac{100}{n}{\displaystyle \sum _{n=1}^{i}{\left(\frac{{e}_{i}}{{A}_{i}}\right)}^{2}} $KL divergence$ {D}_{\text{KL}}(P\Vert Q)={\displaystyle \sum _{i=1}^{n}P({x}_{i})\mathrm{log}\left(\frac{P({x}_{i})}{Q({x}_{i})}\right)} $
    Root relative squared error, RRSE$ \text{RRSE}=\sqrt{\sum\limits _{i=1}^{n}\dfrac{{e}_{i}^{2}}{{\left({A}_{i}-\overline{A}\right)}^{2}}} $
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yuan X F, Wang Y L, Yang C H, et al. The application of deep learning in data-driven modeling of process industries. Chin J Intell Sci Technol, 2020, 2(2): 107

    袁小鋒, 王雅琳, 陽春華, 等. 深度學習在流程工業過程數據建模中的應用. 智能科學與技術學報, 2020, 2(2):107
    [2] Lim B, Zohren S. Time-series forecasting with deep learning: A survey. Philos Trans Ser A Math Phys Eng Sci, 2021, 379(2194): 20200209
    [3] Xu G, Li M, Xu J W, et al. Control technology of end-point carbon in converter steelmaking based on functional digital twin model. Chin J Eng, 2019, 41(4): 521

    徐鋼, 黎敏, 徐金梧, 等. 基于函數型數字孿生模型的轉爐煉鋼終點碳控制技術. 工程科學學報, 2019, 41(4):521
    [4] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [J/OL]. arXiv preprint (2014-12-11) [2021-12-02].https://arxiv.org/abs/ 1412.3555
    [5] Salinas D, Flunkert V, Gasthaus J, et al. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Int J Forecast, 2020, 36(3): 1181 doi: 10.1016/j.ijforecast.2019.07.001
    [6] Wen R, Torkkola K, Narayanaswamy B, et al. A multi-horizon quantile recurrent forecaster [J/OL]. arXiv preprint (2018-06-28) [2021-12-02].https://arxiv.org/abs/1711.11053
    [7] Oord A, Dieleman S, Zen H, et al. Wavenet: A generative model for raw audio [J/OL]. arXiv preprint (2016-09-19) [2021-12-02].https://arxiv.org/abs/1609.03499
    [8] Bai S, Kolter J Z, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [J/OL]. arXiv preprint (2016-09-19) [2021-12-02].https://arxiv.org/abs/1803.01271
    [9] Zhang K P, Liu Z J, Zheng L. Short-term prediction of passenger demand in multi-zone level: Temporal convolutional neural network with multi-task learning. IEEE Trans Intell Transp Syst, 2020, 21(4): 1480 doi: 10.1109/TITS.2019.2909571
    [10] Zhao W T, Gao Y Y, Ji T X, et al. Deep temporal convolutional networks for short-term traffic flow forecasting. IEEE Access, 2019, 7: 114496 doi: 10.1109/ACCESS.2019.2935504
    [11] Zheng C P, Fan X L, Wang C, et al. Gman: A graph multi-attention network for traffic prediction // Proceedings of the AAAI Conference on Artificial Intelligence. New York, 2020, 34(1): 1234
    [12] Lea C, Flynn M D, Vidal R, et al. Temporal convolutional networks for action segmentation and detection // 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 1003
    [13] Farha Y A, Gall J. Ms-tcn: Multi-stage temporal convolutional network for action segmentation // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 3570
    [14] Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372

    張永峰, 陸志強. 基于集成神經網絡的剩余壽命預測. 工程科學學報, 2020, 42(10):1372
    [15] Xu R C, Yan W W, Wang G L, et al. Time series forecasting based on seasonality modeling and its application to electricity price forecasting. Acta Autom Sin, 2020, 46(6): 1136

    徐任超, 閻威武, 王國良, 等. 基于周期性建模的時間序列預測方法及電價預測研究. 自動化學報, 2020, 46(6):1136
    [16] Yuan Z L, Hu J L, Wu D, et al. A dual-attention recurrent neural network method for deep cone thickener underflow concentration prediction. Sensors, 2020, 20(5): 1260 doi: 10.3390/s20051260
    [17] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J/OL]. arXiv preprint (2017-12-12) [2021-12-02].https://arxiv.org/abs/1706.03762
    [18] Li S Y, Jin X Y, Xuan Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting//33rd Conference on Neural Information Processing Systems. Vancouver, 2019
    [19] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [J/OL]. arXiv preprint (2021-06-03) [2021-12-02].https://arxiv.org/abs/2010.11929
    [20] Child R, Gray S, Radford A, et al. Generating long sequences with sparse transformers [J/OL]. arXiv preprint (2019-04-23) [2021-12-02].https://arxiv.org/abs/1904.10509
    [21] Kitaev N, Kaiser Ł, Levskaya A. Reformer: the efficient transformer [J/OL]. arXiv preprint (2020-02-18) [2021-12-02].https://arxiv.org/abs/2001.04451
    [22] Beltagy I, Peters M E, Cohan A. Longformer: the long-document transformer [J/OL]. arXiv preprint (2020-12-02) [2021-12-02].https://arxiv.org/abs/2004.05150
    [23] Zhou H Y, Zhang S H, Peng J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting [J/OL]. arXiv preprint (2020-03-28) [2021-12-02].https://arxiv.org/abs/2012.07436
    [24] Wu H X, Xu J H, Wang J M, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting [J/OL]. arXiv preprint (2021-06-24) [2021-12-02].https://arxiv.org/abs/2106.13008
    [25] Botchkarev A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology [J/OL]. arXiv preprint (2018-09-09) [2021-12-02].https://arxiv.org/abs/1809.03006
    [26] Cui Y, Xie J D, Zheng K. Historical inertia: A neglected but powerful baseline for long sequence time-series forecasting // Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Gold Coast, 2021: 2965
    [27] Moor B D, Gersem P D, Schutter B D, et al. DAISY: A database for identification of systems. J A, 1997, 38(3): 4
    [28] Dua D, Graff C. UCI Machine Learning Repository [DB/OL]. University of California, School of Information and Computer Science (2021-06-05)[2021-12-02].https://archive.ics.uci.edu/ml/index.php
    [29] Godahewa R, Bergmeir C, Webb G I, et al. Monash time series forecasting archive [J/OL]. arXiv preprint (2021-05-14) [2021-12-02].https://arxiv.org/abs/2105.06643
    [30] Wang H J, Wang X L, Zhang X, et al. Deep cone dynamic flocculation thickening of ultrafine full tailings. Chin J Eng, 2022, 44(2): 163

    王洪江, 王小林, 張璽, 等. 超細全尾砂深錐動態絮凝濃密試驗. 工程科學學報, 2022, 44(2):163
    [31] Sun Q Q, Ge Z Q. Probabilistic sequential network for deep learning of complex process data and soft sensor application. IEEE Trans Ind Inform, 2019, 15(5): 2700 doi: 10.1109/TII.2018.2869899
    [32] Yuan X F, Li L, Wang Y L. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE Trans Ind Inform, 2020, 16(5): 3168 doi: 10.1109/TII.2019.2902129
    [33] Yao Z B, Niu W J, Zhang Y, et al. Development and application of a rockburst database management system. Chin J Eng, http://doi.org/10.13374/j.issn2095-9389.2021.08.12.002

    姚志賓, 牛文靜, 張宇, 等. 巖爆數據庫管理系統開發及應用. 工程科學學報,http://doi.org/10.13374/j.issn2095-9389.2021.08.12.002
    [34] Nú?ez F, Langarica S, Díaz P, et al. Neural network-based model predictive control of a paste thickener over an industrial Internet platform. IEEE Trans Ind Inform, 2020, 16(4): 2859 doi: 10.1109/TII.2019.2953275
    [35] Zhang H, Tang Z H, Xie Y F, et al. Feature reconstruction-regression network: A light-weight deep neural network for performance monitoring in the froth flotation. IEEE Trans Ind Inform, 2021, 17(12): 8406 doi: 10.1109/TII.2020.3046278
    [36] Yuan Z L, Li X R, Wu D, et al. Continuous-time prediction of industrial paste thickener system with differential ODE-net. IEEE/CAA J Autom Sin, 2022, 9(4): 686 doi: 10.1109/JAS.2022.105464
    [37] Fan D Y, Sun H, Yao J, et al. Well production forecasting based on ARIMA-LSTM model considering manual operations. Energy, 2021, 220: 119708 doi: 10.1016/j.energy.2020.119708
    [38] Zhang X G, Lei Y Y, Chen H, et al. Multivariate time-series modeling for forecasting sintering temperature in rotary kilns using DCGNet. IEEE Trans Ind Inform, 2021, 17(7): 4635 doi: 10.1109/TII.2020.3022019
    [39] Li J F, Yang C J, Li Y X, et al. A context-aware enhanced GRU network with feature-temporal attention for prediction of silicon content in hot metal. IEEE Trans Ind Inform,https://ieeexplore.ieee.org/document/9537301
    [40] Du S, Wu M, Chen L F, et al. Operating mode recognition of iron ore sintering process based on the clustering of time series data. Control Eng Pract, 2020, 96: 104297 doi: 10.1016/j.conengprac.2020.104297
    [41] Yuan Z L, He R Z, Yao C, et al. Online reinforcement learning control algorithm for concentration of thickener underflow. Acta Autom Sin, 2021, 47(7): 1558

    袁兆麟, 何潤姿, 姚超, 等. 基于強化學習的濃密機底流濃度在線控制算法. 自動化學報, 2021, 47(7):1558
    [42] Long J Y, Sun Z Z, Pardalos P M, et al. A robust dynamic scheduling approach based on release time series forecasting for the steelmaking-continuous casting production. Appl Soft Comput, 2020, 92: 106271 doi: 10.1016/j.asoc.2020.106271
    [43] Han Y M, Zhou R D, Geng Z Q, et al. Production prediction modeling of industrial processes based on Bi-LSTM // 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). Jinzhou, 2019: 285
    [44] Wang K, Gopaluni R B, Chen J, et al. Deep learning of complex batch process data and its application on quality prediction. IEEE Trans Ind Inform, 2020, 16(12): 7233 doi: 10.1109/TII.2018.2880968
    [45] Essien A, Giannetti C. A deep learning model for smart manufacturing using convolutional LSTM neural network autoencoders. IEEE Trans Ind Inform, 2020, 16(9): 6069 doi: 10.1109/TII.2020.2967556
    [46] Antonopoulos I, Robu V, Couraud B, et al. Data-driven modelling of energy demand response behaviour based on a large-scale residential trial. Energy AI, 2021, 4: 100071 doi: 10.1016/j.egyai.2021.100071
    [47] Rojat T, Puget R, Filliat D, et al. Explainable artificial intelligence (XAI) on TimeSeries data: A survey [J/OL]. arXiv preprint (2021-04-02) [2021-12-02].https://arxiv.org/abs/2104.00950
    [48] Demeester T. System identification with time-aware neural sequence models [J/OL]. arXiv preprint (2019-11-21) [2021-12-02].https://arxiv.org/abs/1911.09431
    [49] Fatehi A, Huang B. Kalman filtering approach to multi-rate information fusion in the presence of irregular sampling rate and variable measurement delay. J Process Control, 2017, 53: 15 doi: 10.1016/j.jprocont.2017.02.010
    [50] Martí L, Sanchez-Pi N, Molina J M, et al. Anomaly detection based on sensor data in petroleum industry applications. Sens (Basel Switz), 2015, 15(2): 2774 doi: 10.3390/s150202774
    [51] Malhotra P, Ramakrishnan A, Anand G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection [J/OL]. arXiv preprint (2016-07-11) [2021-12-02].https://arxiv.org/abs/1607.00148
    [52] Siddiqui S A, Mercier D, Munir M, et al. Tsviz: demystification of deep learning models for time-series analysis. IEEE Access, 2019, 7: 67027 doi: 10.1109/ACCESS.2019.2912823
    [53] Schockaert C, Leperlier R, Moawad A. Attention mechanism for multivariate time series recurrent model interpretability applied to the ironmaking industry [J/OL]. arXiv preprint (2020-07-15) [2021-12-02].https://arxiv.org/abs/2007.12617
    [54] Ribeiro M T, Singh S, Guestrin C. “Why should I trust You?”: Explaining the predictions of any classifier // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, 2016: 1135
    [55] Lundberg S M, Lee S I. A unified approach to interpreting model predictions [J/OL]. arXiv preprint (2017-11-25) [2021-12-02].https://arxiv.org/abs/1705.07874
    [56] Serradilla O, Zugasti E, Cernuda C, et al. Interpreting remaining useful life estimations combining explainable artificial intelligence and domain knowledge in industrial machinery // 2020 IEEE International Conference on Fuzzy Systems. Glasgow, 2020: 1
  • 加載中
圖(1) / 表(2)
計量
  • 文章訪問數:  1835
  • HTML全文瀏覽量:  560
  • PDF下載量:  298
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-02
  • 網絡出版日期:  2022-03-14
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回