<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高速連鑄結晶器內凝固傳熱行為及其均勻性控制

朱苗勇 蔡兆鎮

朱苗勇, 蔡兆鎮. 高速連鑄結晶器內凝固傳熱行為及其均勻性控制[J]. 工程科學學報, 2022, 44(4): 703-711. doi: 10.13374/j.issn2095-9389.2021.12.01.002
引用本文: 朱苗勇, 蔡兆鎮. 高速連鑄結晶器內凝固傳熱行為及其均勻性控制[J]. 工程科學學報, 2022, 44(4): 703-711. doi: 10.13374/j.issn2095-9389.2021.12.01.002
ZHU Miao-yong, CAI Zhao-zhen. Heat transfer behavior and homogenous solidification control for high-speed continuous casting slab mold[J]. Chinese Journal of Engineering, 2022, 44(4): 703-711. doi: 10.13374/j.issn2095-9389.2021.12.01.002
Citation: ZHU Miao-yong, CAI Zhao-zhen. Heat transfer behavior and homogenous solidification control for high-speed continuous casting slab mold[J]. Chinese Journal of Engineering, 2022, 44(4): 703-711. doi: 10.13374/j.issn2095-9389.2021.12.01.002

高速連鑄結晶器內凝固傳熱行為及其均勻性控制

doi: 10.13374/j.issn2095-9389.2021.12.01.002
基金項目: 國家自然科學基金資助項目(52174307);興遼英才計劃資助項目(XLYC1802032)
詳細信息
    通訊作者:

    E-mail: myzhu@mail.neu.edu.cn

  • 中圖分類號: TF777

Heat transfer behavior and homogenous solidification control for high-speed continuous casting slab mold

More Information
  • 摘要: 從分析高拉速包晶鋼板坯連鑄結晶器內凝固傳熱行為特征入手,首先闡明拉速對結晶器內的界面熱阻、凝固坯殼的溫度與應力分布的影響規律,研究發現拉速超過1.6 m·min?1時,界面熱阻明顯增加,拉速由1.4 m·min?1提升至1.6 m·min?1和1.8m·min?1時,出結晶器坯殼厚度相應減少約10%,其發生漏鋼的危險不斷增加;在此基礎上,闡述了結晶器的內腔結構、保護渣、振動與液面控制等控制結晶器內坯殼凝固均勻性的相關技術。要實現高速連鑄,首要應考慮結晶器內腔結構的優化設計,使其能更好地迎合凝固坯殼的生長,研制適合包晶鋼等凝固特點的專用連鑄保護渣至關重要,鑄坯鼓肚控制也是保障高拉速液面穩定的關鍵。

     

  • 圖  1  不同拉速包晶鋼板坯結晶器窄面中心線上的熱流密度分布

    Figure  1.  Heat flux distribution at narrow face centerline of slab mold for peritectic steel under different casting speeds

    圖  2  拉速對出結晶器坯殼厚度的影響

    Figure  2.  Effect of casting speed on the thickness of solidified shell at the mold exit

    圖  3  不同拉速下包晶鋼板坯結晶器內坯殼角部區域氣隙沿結晶器高度方向的分布

    Figure  3.  Distribution of air gap at corner region along the slab mold length for peritectic steel under different casting speed

    圖  4  不同拉速下結晶器內坯殼角部區域保護渣沿高度方向的分布。(a)寬面;(b)窄面

    Figure  4.  Distribution of mold flux at shell corner along mold length under different casting speeds: (a) wide face; (b) narrow face

    圖  5  不同拉速下結晶器內坯殼的表面溫度沿高度方向的分布。(a)寬面;(b)窄面

    Figure  5.  Distribution of shell surface temperature along the mold length under different casting speeds: (a) wide face; (b) narrow face

    圖  6  拉速為1.4 m·min?1的結晶器寬面的氣隙分布

    Figure  6.  Distribution of air gap at the wide face of mold with casting speed of 1.4 m·min?1

    圖  7  拉速對在結晶器出口處凝固坯殼應力分布的影響。(a)1.4 m·min?1;(b)1.6 m·min?1;(c)1.8 m·min?1

    Figure  7.  Effect of casting speed on the shell stress distribution at mold exit: (a) 1.4 m·min?1; (b) 1.6 m·min?1; (c) 1.8 m·min?1

    圖  8  窄面坯殼凝固熱收縮沿結晶器高度方向的分布

    Figure  8.  Distribution of shrinkage for solidifying shell of the narrow face along the mold length

    圖  9  曲面型結晶器窄面結構示意圖

    Figure  9.  Schematic of a convex-shaped structure of the mold narrow face

    圖  10  新型曲面結晶器與傳統線性錐度結晶器角部區域氣隙沿其高度方向的分布。(a)寬面;(b)窄面

    Figure  10.  Distribution of air gap at the corner region for new convex surface mold and conventional mold along the mold length: (a) wide face; (b) narrow face

    圖  11  新型曲面結晶器與傳統結晶器出口凝固坯殼生長情況

    Figure  11.  Comparison of solidified shell thickness at the exit between the new and conventional mold

    圖  12  結晶器內保護渣的消耗與拉速的關系[14]

    Figure  12.  Relation between the consumption of mold flux and casting speed[14]

    圖  13  板坯結晶器傳輸行為示意圖[20]

    Figure  13.  Schematic of transport phenomena in slab continuous casting mold[20]

    圖  14  鑄坯斷面為230 mm × 1650 mm、拉速為1.8 m·min?1時彎月面附近壓力、熱流和固渣膜及液渣膜厚度隨結晶器振動的變化[25]

    Figure  14.  Predicted pressure, heat flux, and thicknesses of liquid and solid slag layers at the meniscus through oscillation cycles for strand section size of 230 mm × 1650 mm and casting speed of 1.8 m·min?1[25]

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhu M Y. A study of transport phenomena and key technologies for high-speed continuous casting of steel. Iron Steel, 2021, 56(7): 1

    朱苗勇. 高拉速連鑄過程傳輸行為特征及關鍵技術探析. 鋼鐵, 2021, 56(7):1
    [2] Deng X X, Pan H W, Ji C X, et al. Review on high speed conventional slab continuous casting of low carbon steels. Iron Steel, 2019, 54(8): 70

    鄧小旋, 潘宏偉, 季晨曦, 等. 常規低碳鋼板坯的高速連鑄工藝技術. 鋼鐵, 2019, 54(8):70
    [3] Suzuki M, Suzuki M, Nakada M. Perspectives of research on high-speed conventional slab continuous casting of carbon steels. ISIJ Int, 2001, 41(7): 670 doi: 10.2355/isijinternational.41.670
    [4] Lee S M, Hwang J Y, Lee S H et al. Revamping of the no. 2-3 slab caster at Posco gwangyang: Design, start-up and initial operation results. La Metallurgia Italiana, 2009(1): 33
    [5] Li L P, Wang X H, Deng X X, et al. Application of high speed continuous casting on low carbon conventional slab in SGJT. Steel Res Int, 2014, 85(11): 1490 doi: 10.1002/srin.201300426
    [6] Suzuki M, Yu C H, Sato H, et al. Origin of heat transfer anomaly and solidifying shell deformation of peritectic steels in continuous casting. ISIJ Int, 1996, 36(Suppl): S171 doi: 10.2355/isijinternational.36.Suppl_S171
    [7] Azizi G, Thomas B G, Zaeem M A. Review of peritectic solidification mechanisms and effects in steel casting. Metall Mater Trans B, 2020, 51(5): 1875 doi: 10.1007/s11663-020-01942-5
    [8] Kumar D S, Rajendra T, Sarkar A, et al. Slab quality improvement by controlling mould fluid flow. Ironmak Steelmak, 2007, 34(2): 185 doi: 10.1179/174328107X155330
    [9] Ren L. Dependence of the Surface Quality of a Wide Continuous Casting Slab on the Fluid Flow in the Mold [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    任磊. 寬板坯連鑄結晶器內鋼液流動與鑄坯表面質量的關系研究[學位論文]. 北京: 北京科技大學, 2017
    [10] Kanazawa T, Hiraki S, Kawamoto M, et al. Behavior of lubrication and heat transfer in mold at high speed continuous casting. Tetsu-to-Hagane, 1997, 83(11): 701 doi: 10.2355/tetsutohagane1955.83.11_701
    [11] Cai K K. Continuous Casting Mold. Beijing: Metallurgical Industry Press, 2008

    蔡開科. 連鑄結晶器. 北京: 冶金工業出版社, 2008
    [12] Cai Z Z, Zhu M Y. Simulation of thermal behavior during steel solidification in slab continuous casting mold. Acta Metall Sin, 2011, 47(6): 676

    蔡兆鎮, 朱苗勇. 板坯連鑄結晶器內鋼凝固過程熱行為研究. 金屬學報, 2011, 47(6):676
    [13] Cai Z Z, Zhu M Y. Thermo-mechanical behavior of peritectic steel solidifying in slab continuous casting mold and a new mold taper design. ISIJ Int, 2013, 53(10): 1818 doi: 10.2355/isijinternational.53.1818
    [14] Suzuki M, Mizukami H, Kitagawa T, et al. Development of a new mold oscillation mode for high-speed continuous casting of steel slabs. ISIJ Int, 1991, 31(3): 254 doi: 10.2355/isijinternational.31.254
    [15] Wolf M M. Mold heat transfer and lubrication control— —two major functions of caster productivity and quality assurance // 13th Process Technology Conference Proceedings. Nashville, 1995: 99
    [16] Kromhout J A, Schimmel R C. Understanding mould powders for high-speed casting. Ironmak Steelmak, 2018, 45(3): 249 doi: 10.1080/03019233.2016.1257557
    [17] Kuimoto H, Baka N, Kasai N, et al. Increase of casting speed of hypo-peritectic steel at Kashima No. 3 Caster// 7th European Conference on Continuous Casting. Dusseldorf, 2011: 1
    [18] Hanao M, Kawamoto M, Murakami T, et al. Mold flux for high speed continuous casting of hypoperitectic steel slabs. Metallurgical Research &Technology, 2006, 103(2): 82
    [19] Ogibayashi S, Mukai T, Mimura Y, et al. Mold powder technology for continuous casting of low-carbon aluminum-killed steel. Nippon Steel Tech Rep, 1987(34): 1
    [20] Thomas B G. Modeling of the continuous casting of steel-past, present and future. Metall Mater Trans B, 2002, 33(6): 795 doi: 10.1007/s11663-002-0063-9
    [21] Wang J J, Zhang L F, Chen W, et al. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold. Chin J Eng, 2021, 43(6): 786

    王舉金, 張立峰, 陳威, 等. 卷渣類夾雜物在結晶器鋼液中成分轉變的動力學模型. 工程科學學報, 2021, 43(6):786
    [22] Qin Q, Yang Z L. Finite element simulation of bulge deformation for slab continuous casting. Int J Adv Manuf Technol, 2017, 93(7): 4357
    [23] Lee J D, Yim C H. The mechanism of unsteady bulging and its analysis with the finite element method for continuously cast steel. ISIJ Int, 2000, 40(8): 765 doi: 10.2355/isijinternational.40.765
    [24] Wu C H, Ji C, Zhu M Y. Numerical simulation of bulging deformation for wide-thick slab under uneven cooling conditions. Metall Mater Trans B, 2018, 49(3): 1346 doi: 10.1007/s11663-018-1173-3
    [25] Yang J. Lubrication Characteristics and Heat Transfer Behaviors in Continuous Casting Mold for High Mn High Al Steel [Dissertation]. Shenyang: Northeastern University, 2018

    楊杰. 高錳高鋁鋼連鑄結晶器的潤滑特性與傳熱行為研究[學位論文]. 沈陽: 東北大學, 2018
  • 加載中
圖(14)
計量
  • 文章訪問數:  597
  • HTML全文瀏覽量:  213
  • PDF下載量:  93
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-01
  • 網絡出版日期:  2022-01-26
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回