<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

掏槽孔超深深度對爆破效果的影響

王雁冰 張航 楊仁樹 謝平 李書萱 周振偉

王雁冰, 張航, 楊仁樹, 謝平, 李書萱, 周振偉. 掏槽孔超深深度對爆破效果的影響[J]. 工程科學學報, 2023, 45(2): 182-194. doi: 10.13374/j.issn2095-9389.2021.11.30.006
引用本文: 王雁冰, 張航, 楊仁樹, 謝平, 李書萱, 周振偉. 掏槽孔超深深度對爆破效果的影響[J]. 工程科學學報, 2023, 45(2): 182-194. doi: 10.13374/j.issn2095-9389.2021.11.30.006
WANG Yan-bing, ZHANG Hang, YANG Ren-shu, XIE Ping, LI Shu-xuan, ZHOU Zhen-wei. Experiment study on overdepth coefficient of the cut hole in coal mine roadway excavation blasting[J]. Chinese Journal of Engineering, 2023, 45(2): 182-194. doi: 10.13374/j.issn2095-9389.2021.11.30.006
Citation: WANG Yan-bing, ZHANG Hang, YANG Ren-shu, XIE Ping, LI Shu-xuan, ZHOU Zhen-wei. Experiment study on overdepth coefficient of the cut hole in coal mine roadway excavation blasting[J]. Chinese Journal of Engineering, 2023, 45(2): 182-194. doi: 10.13374/j.issn2095-9389.2021.11.30.006

掏槽孔超深深度對爆破效果的影響

doi: 10.13374/j.issn2095-9389.2021.11.30.006
基金項目: 國家自然科學基金重點資助項目(51934001);中國礦業大學(北京)越崎青年學者資助項目(800015Z11A24)
詳細信息
    通訊作者:

    E-mail: yrs@cumtb.edu.cn

  • 中圖分類號: TD235.4

Experiment study on overdepth coefficient of the cut hole in coal mine roadway excavation blasting

More Information
  • 摘要: 煤礦巖巷鉆爆施工中,速度的關鍵在于掏槽。隨著巖巷掘進工程量不斷增大,雖然炮孔深度逐漸增大,但是掏槽孔超出普通孔的長度并沒有改變,基本保持在200 mm及以下。針對掏槽孔超深與炮孔利用率這一問題,本文在超深系數η的基礎上,引入裂隙區重合度φ的概念,利用數學建模方法,分析了不同超深深度爆破時的巖石應力狀態,建立了超深深度及巖石碎脹系數之間的關系,并確定了掏槽槽腔主要參數的計算公式及取值范圍,發現存在最優掏槽孔超深系數η和裂隙區重合度φ,使得炮眼利用率最高。利用LS-DYNA數值模擬分析了掏槽孔超深爆破時爆炸應力波的傳播規律和孔底巖石的受力特征,并比較了200、300、400和500 mm不同超深深度的應力波強度變化特征并應用于巖巷掘進現場,對比了超深爆破方案和普通爆破方案的單循環進尺、炮孔利用率、眼痕率及大塊率等爆破效果指標。結果表明,當超深深度為400 mm時,炸藥爆破能量充分用于破巖,能量利用率最高,爆破后形成重疊的裂隙區,增大了后續爆破的自由面,提高了爆破破巖的效率,對巖巷鉆爆法施工的參數優化有一定的指導意義。

     

  • 圖  1  斷面炮孔布置模型圖(單位:m)

    Figure  1.  Section blast hole layout(unit: m)

    圖  2  裂隙重合區示意圖

    Figure  2.  Schematic diagram of fracture coincidence area

    圖  3  超深系數與裂隙區重合度、炮孔利用率關系圖

    Figure  3.  Relation diagram of ultra-deep coefficient with coincidence degree of fracture zone and utilization ratio of blast hole

    圖  4  超深200 mm炮孔布置及孔底處測點選擇圖

    Figure  4.  Arrangement of 200 mm overdepth blast holes and selection of measuring points at the hole bottom

    圖  5  超深400 mm方案爆破應力波強度變化特征圖.(a)99 μs;(b)199 μs;(c)399 μs;(d)599 μs;(e)799 μs;(f)999 μs

    Figure  5.  Variation characteristics of blasting stress wave intensity of overdepth 400 mm scheme:(a)99 μs;(b)199 μs;(c)399 μs;(d)599 μs;(e)799 μs;(f)999 μs

    圖  6  不同超深爆破方式下孔底有效應力變化曲線.(a)200 mm;(b)300 mm;(c)400 mm;(d)500 mm

    Figure  6.  Variation curve of effective stress at hole bottom under different ultra deep blasting methods:(a)200 mm;(b)300 mm;(c)400 mm;(d)500 mm

    圖  7  不同超深爆破方式下各測點的有效應力峰值

    Figure  7.  Effective stress peak value of each measuring point under different ultra deep blasting methods

    圖  8  原始爆破方案爆破效果部分照片.(a)爆后斷面圖;(b)爆破產生大塊矸石圖

    Figure  8.  Photos of blasting effect of original blasting scheme: (a) section after blasting; (b) large gangue produced by blasting

    圖  9  超深400 mm爆破方案圖

    Figure  9.  Blasting scheme of overdepth 400 mm

    圖  10  原方案與新方案爆破效果對比圖.(a)單循環進尺;(b)炮孔利用率;(c)眼痕率;(d)大塊率;(e)爆堆范圍;(f)炸藥單耗

    Figure  10.  Comparison of blasting effect between the original scheme and the new scheme: (a) single cycle footage; (b) hole utilization rate; (c) half-hole marks; (d) large block rate; (e) explosive range; (f) explosive unit consumption

    表  1  砂巖巖石力學參數表

    Table  1.   Mechanical parameters of sandstone

    Rock name$\rho$/
    (kg·m?3
    $ {\text{C}}_{\text{p}} $/
    (m·s?1
    ${\sigma }_{\text{cd} }$/MPa${\sigma }_{\text{td} }$/MPa$\mu$E/GPa
    Sandstone24004000120120.2540
    下載: 導出CSV

    表  2  爆破用炸藥參數

    Table  2.   Parameters of explosives used in blasting

    Density/
    (g·cm-3
    Burst velocity/
    (m·s-1
    Burst pressure/GPaJWL Equation of state parameters
    A/GPaB/GPaR1R2E0/GPa
    1.638002.55214.40.1854.150.954.19
    下載: 導出CSV

    表  3  巖石模型力學參數

    Table  3.   Mechanical parameters of rock model

    Density/

    (g·cm-3
    Modulus of elasticity/GPaDynamic compressive strength/MPaDynamic tensile strength/MPaμ
    2.1638.512816.30.27
    下載: 導出CSV

    表  4  炮泥模型力學參數

    Table  4.   Mechanical parameters of blasting mud model

    Density/

    (g·cm-3
    Shear modulus/
    MPa
    Cohesion/MPaInternal friction angle/(°)μ
    1.35300.290.620.29
    下載: 導出CSV

    表  5  4種新方案的部分主要參數

    Table  5.   Some main parameters of four schemes after optimization

    Overdepth/
    mm
    Cut hole (length /mm) /
    (depth/ mm)
    Depth of auxiliary hole, caving hole and surrounding hole/
    mm
    Angle between cutting hole and free surface/
    (°)
    Total number
    of holes
    Total
    explosive /kg
    Specific charge/
    (kg·m?3
    2002052/200020007711668.82.37
    3002155/210020007710867.52.19
    4002257/220020007710760.01.93
    5002360/230020007711372.02.33
    下載: 導出CSV

    表  6  超深400 mm爆破炮孔裝藥參數表

    Table  6.   Charging parameters of ultra deep 400 mm blasting hole

    Blast hole
    name
    Hole
    number
    Number of
    holes
    Depth of holes/
    mm
    Angle /(°)Charge quantityInitiation
    sequence
    Connection
    mode
    VerticalLevelRoll / holeTotal/kg
    Cut hole1—88220090773.07.20Series parallel
    Central hole9—102220090901.50.90
    Auxiliary cutting hole11—144220090862.53.00
    Auxiliary hole 115—2511180090902.06.60
    Auxiliary hole 226—4015180090902.09.00
    Auxiliary hole 341—6121180090902.012.60IV
    Peripheral hole62—8423180090931.510.35V
    Bottom hole85—9713180093902.07.80V
    Total9757.45
    First row98—110132500909027.8Series parallel
    Second row111—123132500909027.8
    Third row124—136132500909027.8
    Fourth row137—149132500909327.8
    Fifth row150—162132500909027.8
    Sixth row163—175132500909027.8
    Seventh row176—188132500939027.8
    Total9154.6
    下載: 導出CSV

    表  7  不同超深方案爆破效果對比

    Table  7.   Comparison of blasting effects of different ultra deep schemes

    Overdepth/
    mm
    Bulk rate/%Average value of explosion range/mRates of half-hole marks/%Average value of blast hole utilization/%Roadway forming qualityAverage value of single cycle footage/mAverage unit consumption of explosive/
    (kg·m?3)
    20013.015.003484.2Commonly1.6002.37
    30010.212.254093.5Good1.6952.19
    4008.812.154695.2Good1.7151.93
    5009.212.503794.4Good1.7002.33
    下載: 導出CSV

    表  8  新方案現場爆破情況

    Table  8.   Site blasting of new scheme

    Overdepth
    /mm
    Half-hole marksExplosive pileSection forming
    200
    300
    400
    500
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yang R S. Present status and outlook on safety and high efficient heading technology of mine rock roadway in China. Coal Sci Technol, 2013, 41(9): 18

    楊仁樹. 我國煤礦巖巷安全高效掘進技術現狀與展望. 煤炭科學技術, 2013, 41(9):18
    [2] Yang R S, Zhang Z R, An C, et al. Discussion on ultra-deep depth problem of slot hole in blasting excavation of rock roadway in coal mine. Coal Sci Technol, 2020, 48(1): 10

    楊仁樹, 張召冉, 安晨, 等. 煤礦巖巷掘進爆破掏槽孔超深問題探討. 煤炭科學技術, 2020, 48(1):10
    [3] Wang W L, Qian J Y. Experimental study on field optimization of straight cut method. Coal Sci Technol, 1992, 20(7): 20

    王文龍, 錢建堯. 直眼掏槽方法的現場優化試驗研究. 煤炭科學技術, 1992, 20(7):20
    [4] Gao J S, Zhang Q. Blasting Theories and Optimum Design. Xi’an: Xi’an Maps Press, 1993

    高金石, 張奇. 爆破理論與爆破優化. 西安: 西安地圖出版社, 1993
    [5] Wang S R. Review and prospect of rock roadway blasting technology in China's coal mines. Mine Constr Technol, 1996, 17(Suppl 2): 13

    王樹仁. 我國煤礦巖巷爆破技術的回顧與展望. 建井技術, 1996, 17(增刊2): 13
    [6] Wang H J, Huang F L, Zhang Q M. Mechanics effect analysis and parameters study on borehole directional fracture blasting. J China Coal Soc, 2003, 28(4): 399 doi: 10.3321/j.issn:0253-9993.2003.04.014

    王漢軍, 黃風雷, 張慶明. 巖石定向斷裂爆破的力學分析及參數研究. 煤炭學報, 2003, 28(4):399 doi: 10.3321/j.issn:0253-9993.2003.04.014
    [7] Hu K L, Yang R S, Xu X F, et al. Blasting test and study on driving of deep-seated rock tunnels of coal mines. J Liaoning Tech Univ, 2007, 26(6): 856

    胡坤倫, 楊仁樹, 徐曉峰, 等. 煤礦深部巖巷掘進爆破試驗研究. 遼寧工程技術大學學報, 2007, 26(6):856
    [8] Shan R L, Zhou J J, Huang B L, et al. Analysis on slotting blasting influence factors of mine roadway. Coal Sci Technol, 2010, 38(2): 25

    單仁亮, 周紀軍, 黃寶龍, 等. 巷道掏槽爆破影響因素分析. 煤炭科學技術, 2010, 38(2):25
    [9] Yu Y Q, Wang C, Chu H B, et al. Duplex wedge cutting on mid-depth borehole tunneling blasting in hard rock. Blasting, 2013, 30(2): 95 doi: 10.3963/j.issn.1001-487X.2013.02.019

    余永強, 王超, 褚懷保, 等. 硬巖巷道中深孔爆破掘進復楔形掏槽試驗研究. 爆破, 2013, 30(2):95 doi: 10.3963/j.issn.1001-487X.2013.02.019
    [10] Gong M, Wang C H, Liang L X, et al. Function analysis and confirming method of key blasting parameters for excavating in hard rock. J China Coal Soc, 2015, 40(7): 1526

    龔敏, 王燦華, 梁立勛, 等. 硬巖掘進中主要爆破參數的確定與作用. 煤炭學報, 2015, 40(7):1526
    [11] Zuo J J, Yang R S, Xiao C L, et al. Model test of empty hole cut blasting in coal mine rock drivage. J Min Sci Technol, 2018, 3(4): 335

    左進京, 楊仁樹, 肖成龍, 等. 煤礦井巷中空孔掏槽爆破模型實驗研究. 礦業科學學報, 2018, 3(4):335
    [12] Xie L X, Lu W B, Jiang Q H, et al. Damage evolution mechanism of deep rock mass in process of cut blasting. J Central South Univ (Sci Technol), 2017, 48(5): 1252

    謝理想, 盧文波, 姜清輝, 等. 深部巖體在掏槽爆破過程中的損傷演化機制. 中南大學學報(自然科學版), 2017, 48(5):1252
    [13] Wang H B, Zong Q, Zhao Y C. Numerical analysis and application of large diameter cavity parallel cut blasting stress field in vertical shaft. Chin J Rock Mech Eng, 2015, 34(Sup 1): 3223

    汪海波, 宗琦, 趙要才. 立井大直徑中空孔直眼掏槽爆炸應力場數值模擬分析與應用. 巖石力學與工程學報, 2015, 34(S1): 3223
    [14] Yang R S, Wang Y, Gong G H, et al. Experimental study on the ultra-deep length optimization of the excavation cutting holes in the tunnel of Gongchangling iron mine. Met Mine, 2020(7): 16

    楊仁樹, 王渝, 宮國慧, 等. 弓長嶺鐵礦巷道掘進掏槽孔超深長度優化試驗研究. 金屬礦山, 2020(7):16
    [15] Zhang Z R, Chen H Y, Jiao W G, et al. Rock breaking mechanism and blasting parameters of straight-hole cutting with empty-hole. J China Coal Soc, 2020, 45(Sup 2): 791

    張召冉, 陳華義, 矯偉剛, 等. 含空孔直眼掏槽空孔效應及爆破參數研究. 煤炭學報, 2020, 45(S2): 791
    [16] Luo Y, Shen Z W. Influence of borehole stemming on blasting effect. Eng Blasting, 2006, 12(1): 16

    羅勇, 沈兆武. 炮孔填塞對爆破作用效果的研究. 工程爆破, 2006, 12(1):16
    [17] Yang G L, Jiang L L, Yang R S. Investigation of cut blasting with duplex wedge deep holes. J China Univ Min &Technol, 2013, 42(5): 755

    楊國梁, 姜琳琳, 楊仁樹. 復式楔形深孔掏槽爆破研究. 中國礦業大學學報, 2013, 42(5):755
    [18] Yue Z W, Zhang S C, Qiu P, et al. Mechanism of explosive crack propagation with slotted cartridge millisecond blasting. J China Coal Soc, 2018, 43(3): 638

    岳中文, 張士春, 邱鵬, 等. 切縫藥包微差爆破爆生裂紋擴展機理. 煤炭學報, 2018, 43(3):638
    [19] Zong Q, Liu J H. Application research on cutting technology of mid-deep hole blasting in coal mine rock tunnel. Blasting, 2010, 27(4): 35 doi: 10.3963/j.issn.1001-487X.2010.04.009

    宗琦, 劉菁華. 煤礦巖石巷道中深孔爆破掏槽技術應用研究. 爆破, 2010, 27(4):35 doi: 10.3963/j.issn.1001-487X.2010.04.009
    [20] Liang W M, Wang Y X, Chu H B, et al. Study on effect of symmetry of wedge-shaped cutting hole angle on cut blasting. Met Mine, 2009(11): 21 doi: 10.3321/j.issn:1001-1250.2009.11.006

    梁為民, 王以賢, 楮懷保, 等. 楔形掏槽炮孔角度對稱性對掏槽效果影響研究. 金屬礦山, 2009(11):21 doi: 10.3321/j.issn:1001-1250.2009.11.006
    [21] Dai J, Du X L. Research on blasting parameters of wedge-shaped cutting for rock tunnel driving. Min Res Dev, 2011, 31(2): 90 doi: 10.13827/j.cnki.kyyk.2011.02.009

    戴俊, 杜曉麗. 巖石巷道楔形掏槽爆破參數研究. 礦業研究與開發, 2011, 31(2):90 doi: 10.13827/j.cnki.kyyk.2011.02.009
    [22] Zhang W, Zhang D S, Shao P, et al. Fast drilling and blasting construction technology for deep high stress rock roadway. J China Coal Soc, 2011, 36(1): 43 doi: 10.13225/j.cnki.jccs.2011.01.013

    張煒, 張東升, 邵鵬, 等. 深部高應力巖巷快速鉆爆施工技術. 煤炭學報, 2011, 36(1):43 doi: 10.13225/j.cnki.jccs.2011.01.013
    [23] Gu Y L, Li X H, Du Y G, et al. Reasonable smooth blasting factor used in tunnel. J Chongqing Univ (Nat Sci Ed), 2005, 28(3): 95

    顧義磊, 李曉紅, 杜云貴, 王心飛. 隧道光面爆破合理爆破參數的確定. 重慶大學學報(自然科學版), 2005, 28(3):95
    [24] Dai J. Study of the method of firing every other smooth blasting shothole in sequence. J Liaoning Tech Univ (Nat Sci), 1996, 15(4): 429

    戴俊. 光爆孔間隔分段起爆方法的探討. 阜新礦業學院學報(自然科學版), 1996, 15(4):429
    [25] Dai J, Yang Y Q. Calculation of shot hole separation in smooth blasting. Explos Shock Waves, 2003, 23(3): 253 doi: 10.3321/j.issn:1001-1455.2003.03.011

    戴俊, 楊永琦. 光面爆破相鄰炮孔存在起爆時差的炮孔間距計算. 爆炸與沖擊, 2003, 23(3):253 doi: 10.3321/j.issn:1001-1455.2003.03.011
    [26] Xiao S Y, Jiang Y J, Liu Z X, et al. Hard rock blasting energy distribution and fragmentation characteristics under high earth stress. J Vib Shock, 2018, 37(15): 143 doi: 10.13465/j.cnki.jvs.2018.15.020

    肖思友, 姜元俊, 劉志祥, 等. 高地應力下硬巖爆破破巖特性及能量分布研究. 振動與沖擊, 2018, 37(15):143 doi: 10.13465/j.cnki.jvs.2018.15.020
  • 加載中
圖(10) / 表(8)
計量
  • 文章訪問數:  611
  • HTML全文瀏覽量:  249
  • PDF下載量:  77
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-30
  • 網絡出版日期:  2022-09-29
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回