Experiment study on overdepth coefficient of the cut hole in coal mine roadway excavation blasting
-
摘要: 煤礦巖巷鉆爆施工中,速度的關鍵在于掏槽。隨著巖巷掘進工程量不斷增大,雖然炮孔深度逐漸增大,但是掏槽孔超出普通孔的長度并沒有改變,基本保持在200 mm及以下。針對掏槽孔超深與炮孔利用率這一問題,本文在超深系數η的基礎上,引入裂隙區重合度φ的概念,利用數學建模方法,分析了不同超深深度爆破時的巖石應力狀態,建立了超深深度及巖石碎脹系數之間的關系,并確定了掏槽槽腔主要參數的計算公式及取值范圍,發現存在最優掏槽孔超深系數η和裂隙區重合度φ,使得炮眼利用率最高。利用LS-DYNA數值模擬分析了掏槽孔超深爆破時爆炸應力波的傳播規律和孔底巖石的受力特征,并比較了200、300、400和500 mm不同超深深度的應力波強度變化特征并應用于巖巷掘進現場,對比了超深爆破方案和普通爆破方案的單循環進尺、炮孔利用率、眼痕率及大塊率等爆破效果指標。結果表明,當超深深度為400 mm時,炸藥爆破能量充分用于破巖,能量利用率最高,爆破后形成重疊的裂隙區,增大了后續爆破的自由面,提高了爆破破巖的效率,對巖巷鉆爆法施工的參數優化有一定的指導意義。Abstract: In rocky road drilling and blasting in coal mines, the key to work efficiency is cutting. Although blast hole depth has steadily increased with increasing rocky road excavation activities, the cut hole depth is still ordinarily shallow, which is normally kept at 200 mm or less. Using an intelligent design system, a key technology, and equipment matching research of a drilling and blasting method in the Huainan mining area as the engineering background, this paper conducts research on the overdepth coefficient of cutting holes and the optimization of cutting-blasting parameters, aiming at the excessive number of full section blast holes in the mining area and the randomness and irrationality of blast hole layout. The overdepth coefficient, η, was obtained by theoretical derivation, numerical modeling, field testing, and monitoring. Based on this, the coincidence degree of fracture area, φ, is also introduced. This paper analyzes the rock stress state and stress wave attenuation phenomenon during blasting with different overdepths, establishes the relationship between the overdepth and stress between cut holes, determines the calculation formula and value range of the key parameters of the cut cavity, and investigates whether there is an optimal cut hole overdepth coefficient. The coincidence degree with fracture area increases the explosive blasting energy utilization rate and provides a theoretical basis for decreasing the charge and number of holes while retaining the blasting impact. The propagation law of explosion stress wave and the distribution and evolution law of effective stress in rock mass during overdepth blasting of cutting holes at different depths are explored using LS-DYNA numerical simulation, and the variation characteristics of stress wave intensity at different overdepth stress measuring points are compared, based on the geomechanical parameters of surrounding rock in Gubei Coal Mine. The effect of varying cut hole depths on the free surface after blasting and the blasting effect is revealed; overdepth blasting schemes of 200, 300, 400, and 500 mm are applied to the rocky road excavation site. The blasting effect indicators such as single cycle footage, blast hole utilization rate, explosive unit consumption, block rate of each overdepth blasting scheme, and ordinary blasting scheme are compared, and the effect of different overdepths on the quality and effect of cutting-blasting is compared and analyzed. On this premise, the blast hole layout is refined further, the number of blast holes is reduced, and the optimal blasting scheme is determined. The results show that the coincidence degree of fracture area increases as the overdepth coefficient increases, and the blast hole utilization rate initially increases and then decreases as the overdepth coefficient increases, between 0.17 and 0.22, causing the blast hole utilization rate to the peak. This theory proposes a novel approach to increasing the blast hole utilization rate. When the depth of the overdepth is 400 mm, The blasting energy is primarily used to create a crack area around the cut hole, which provides enough free surface for the subsequent central hole and auxiliary hole blasting, reduces the difficulty of rock breaking, increases the volume of the blasting chamber, and facilitates subsequent rock throwing. Simultaneously, the effective stress of each measuring point decays slowly with time, the average stress is higher, and the tensile fracture effect of the stress wave on the surrounding rocks increases and prolongs, creating a complete and even rock mass fracture. The blast hole utilization rate reaches the maximum of 95.2%, the bulk rate and explosive unit consumption are significantly reduced, the rate of half-hole mark rate is significantly increased, and the road construction quality is good. It demonstrates that ultra-deep blasting can enhance not only the blast hole utilization rate but also the blasting impact and road construction quality, which has some guiding significance for the parameter optimization of rocky road drilling and blasting construction.
-
圖 10 原方案與新方案爆破效果對比圖.(a)單循環進尺;(b)炮孔利用率;(c)眼痕率;(d)大塊率;(e)爆堆范圍;(f)炸藥單耗
Figure 10. Comparison of blasting effect between the original scheme and the new scheme: (a) single cycle footage; (b) hole utilization rate; (c) half-hole marks; (d) large block rate; (e) explosive range; (f) explosive unit consumption
表 1 砂巖巖石力學參數表
Table 1. Mechanical parameters of sandstone
Rock name $\rho$/
(kg·m?3)$ {\text{C}}_{\text{p}} $/
(m·s?1)${\sigma }_{\text{cd} }$/MPa ${\sigma }_{\text{td} }$/MPa $\mu$ E/GPa Sandstone 2400 4000 120 12 0.25 40 表 2 爆破用炸藥參數
Table 2. Parameters of explosives used in blasting
Density/
(g·cm-3)Burst velocity/
(m·s-1)Burst pressure/GPa JWL Equation of state parameters A/GPa B/GPa R1 R2 E0/GPa 1.6 3800 2.55 214.4 0.185 4.15 0.95 4.19 表 3 巖石模型力學參數
Table 3. Mechanical parameters of rock model
Density/
(g·cm-3)Modulus of elasticity/GPa Dynamic compressive strength/MPa Dynamic tensile strength/MPa μ 2.16 38.5 128 16.3 0.27 表 4 炮泥模型力學參數
Table 4. Mechanical parameters of blasting mud model
Density/
(g·cm-3)Shear modulus/
MPaCohesion/MPa Internal friction angle/(°) μ 1.35 30 0.29 0.62 0.29 表 5 4種新方案的部分主要參數
Table 5. Some main parameters of four schemes after optimization
Overdepth/
mmCut hole (length /mm) /
(depth/ mm)Depth of auxiliary hole, caving hole and surrounding hole/
mmAngle between cutting hole and free surface/
(°)Total number
of holesTotal
explosive /kgSpecific charge/
(kg·m?3)200 2052/2000 2000 77 116 68.8 2.37 300 2155/2100 2000 77 108 67.5 2.19 400 2257/2200 2000 77 107 60.0 1.93 500 2360/2300 2000 77 113 72.0 2.33 表 6 超深400 mm爆破炮孔裝藥參數表
Table 6. Charging parameters of ultra deep 400 mm blasting hole
Blast hole
nameHole
numberNumber of
holesDepth of holes/
mmAngle /(°) Charge quantity Initiation
sequenceConnection
modeVertical Level Roll / hole Total/kg Cut hole 1—8 8 2200 90 77 3.0 7.20 Ⅰ Series parallel Central hole 9—10 2 2200 90 90 1.5 0.90 Ⅱ Auxiliary cutting hole 11—14 4 2200 90 86 2.5 3.00 Ⅱ Auxiliary hole 1 15—25 11 1800 90 90 2.0 6.60 Ⅱ Auxiliary hole 2 26—40 15 1800 90 90 2.0 9.00 Ⅲ Auxiliary hole 3 41—61 21 1800 90 90 2.0 12.60 IV Peripheral hole 62—84 23 1800 90 93 1.5 10.35 V Bottom hole 85—97 13 1800 93 90 2.0 7.80 V — Total 97 — — — — 57.45 — — First row 98—110 13 2500 90 90 2 7.8 Ⅰ Series parallel Second row 111—123 13 2500 90 90 2 7.8 Ⅱ Third row 124—136 13 2500 90 90 2 7.8 Ⅱ Fourth row 137—149 13 2500 90 93 2 7.8 Ⅲ Fifth row 150—162 13 2500 90 90 2 7.8 Ⅲ Sixth row 163—175 13 2500 90 90 2 7.8 Ⅳ Seventh row 176—188 13 2500 93 90 2 7.8 Ⅴ Total 91 — — — — 54.6 — — 表 7 不同超深方案爆破效果對比
Table 7. Comparison of blasting effects of different ultra deep schemes
Overdepth/
mmBulk rate/% Average value of explosion range/m Rates of half-hole marks/% Average value of blast hole utilization/% Roadway forming quality Average value of single cycle footage/m Average unit consumption of explosive/
(kg·m?3)200 13.0 15.00 34 84.2 Commonly 1.600 2.37 300 10.2 12.25 40 93.5 Good 1.695 2.19 400 8.8 12.15 46 95.2 Good 1.715 1.93 500 9.2 12.50 37 94.4 Good 1.700 2.33 表 8 新方案現場爆破情況
Table 8. Site blasting of new scheme
Overdepth
/mmHalf-hole marks Explosive pile Section forming 200 300 400 500 www.77susu.com -
參考文獻
[1] Yang R S. Present status and outlook on safety and high efficient heading technology of mine rock roadway in China. Coal Sci Technol, 2013, 41(9): 18楊仁樹. 我國煤礦巖巷安全高效掘進技術現狀與展望. 煤炭科學技術, 2013, 41(9):18 [2] Yang R S, Zhang Z R, An C, et al. Discussion on ultra-deep depth problem of slot hole in blasting excavation of rock roadway in coal mine. Coal Sci Technol, 2020, 48(1): 10楊仁樹, 張召冉, 安晨, 等. 煤礦巖巷掘進爆破掏槽孔超深問題探討. 煤炭科學技術, 2020, 48(1):10 [3] Wang W L, Qian J Y. Experimental study on field optimization of straight cut method. Coal Sci Technol, 1992, 20(7): 20王文龍, 錢建堯. 直眼掏槽方法的現場優化試驗研究. 煤炭科學技術, 1992, 20(7):20 [4] Gao J S, Zhang Q. Blasting Theories and Optimum Design. Xi’an: Xi’an Maps Press, 1993高金石, 張奇. 爆破理論與爆破優化. 西安: 西安地圖出版社, 1993 [5] Wang S R. Review and prospect of rock roadway blasting technology in China's coal mines. Mine Constr Technol, 1996, 17(Suppl 2): 13王樹仁. 我國煤礦巖巷爆破技術的回顧與展望. 建井技術, 1996, 17(增刊2): 13 [6] Wang H J, Huang F L, Zhang Q M. Mechanics effect analysis and parameters study on borehole directional fracture blasting. J China Coal Soc, 2003, 28(4): 399 doi: 10.3321/j.issn:0253-9993.2003.04.014王漢軍, 黃風雷, 張慶明. 巖石定向斷裂爆破的力學分析及參數研究. 煤炭學報, 2003, 28(4):399 doi: 10.3321/j.issn:0253-9993.2003.04.014 [7] Hu K L, Yang R S, Xu X F, et al. Blasting test and study on driving of deep-seated rock tunnels of coal mines. J Liaoning Tech Univ, 2007, 26(6): 856胡坤倫, 楊仁樹, 徐曉峰, 等. 煤礦深部巖巷掘進爆破試驗研究. 遼寧工程技術大學學報, 2007, 26(6):856 [8] Shan R L, Zhou J J, Huang B L, et al. Analysis on slotting blasting influence factors of mine roadway. Coal Sci Technol, 2010, 38(2): 25單仁亮, 周紀軍, 黃寶龍, 等. 巷道掏槽爆破影響因素分析. 煤炭科學技術, 2010, 38(2):25 [9] Yu Y Q, Wang C, Chu H B, et al. Duplex wedge cutting on mid-depth borehole tunneling blasting in hard rock. Blasting, 2013, 30(2): 95 doi: 10.3963/j.issn.1001-487X.2013.02.019余永強, 王超, 褚懷保, 等. 硬巖巷道中深孔爆破掘進復楔形掏槽試驗研究. 爆破, 2013, 30(2):95 doi: 10.3963/j.issn.1001-487X.2013.02.019 [10] Gong M, Wang C H, Liang L X, et al. Function analysis and confirming method of key blasting parameters for excavating in hard rock. J China Coal Soc, 2015, 40(7): 1526龔敏, 王燦華, 梁立勛, 等. 硬巖掘進中主要爆破參數的確定與作用. 煤炭學報, 2015, 40(7):1526 [11] Zuo J J, Yang R S, Xiao C L, et al. Model test of empty hole cut blasting in coal mine rock drivage. J Min Sci Technol, 2018, 3(4): 335左進京, 楊仁樹, 肖成龍, 等. 煤礦井巷中空孔掏槽爆破模型實驗研究. 礦業科學學報, 2018, 3(4):335 [12] Xie L X, Lu W B, Jiang Q H, et al. Damage evolution mechanism of deep rock mass in process of cut blasting. J Central South Univ (Sci Technol) , 2017, 48(5): 1252謝理想, 盧文波, 姜清輝, 等. 深部巖體在掏槽爆破過程中的損傷演化機制. 中南大學學報(自然科學版), 2017, 48(5):1252 [13] Wang H B, Zong Q, Zhao Y C. Numerical analysis and application of large diameter cavity parallel cut blasting stress field in vertical shaft. Chin J Rock Mech Eng, 2015, 34(Sup 1): 3223汪海波, 宗琦, 趙要才. 立井大直徑中空孔直眼掏槽爆炸應力場數值模擬分析與應用. 巖石力學與工程學報, 2015, 34(S1): 3223 [14] Yang R S, Wang Y, Gong G H, et al. Experimental study on the ultra-deep length optimization of the excavation cutting holes in the tunnel of Gongchangling iron mine. Met Mine, 2020(7): 16楊仁樹, 王渝, 宮國慧, 等. 弓長嶺鐵礦巷道掘進掏槽孔超深長度優化試驗研究. 金屬礦山, 2020(7):16 [15] Zhang Z R, Chen H Y, Jiao W G, et al. Rock breaking mechanism and blasting parameters of straight-hole cutting with empty-hole. J China Coal Soc, 2020, 45(Sup 2): 791張召冉, 陳華義, 矯偉剛, 等. 含空孔直眼掏槽空孔效應及爆破參數研究. 煤炭學報, 2020, 45(S2): 791 [16] Luo Y, Shen Z W. Influence of borehole stemming on blasting effect. Eng Blasting, 2006, 12(1): 16羅勇, 沈兆武. 炮孔填塞對爆破作用效果的研究. 工程爆破, 2006, 12(1):16 [17] Yang G L, Jiang L L, Yang R S. Investigation of cut blasting with duplex wedge deep holes. J China Univ Min &Technol, 2013, 42(5): 755楊國梁, 姜琳琳, 楊仁樹. 復式楔形深孔掏槽爆破研究. 中國礦業大學學報, 2013, 42(5):755 [18] Yue Z W, Zhang S C, Qiu P, et al. Mechanism of explosive crack propagation with slotted cartridge millisecond blasting. J China Coal Soc, 2018, 43(3): 638岳中文, 張士春, 邱鵬, 等. 切縫藥包微差爆破爆生裂紋擴展機理. 煤炭學報, 2018, 43(3):638 [19] Zong Q, Liu J H. Application research on cutting technology of mid-deep hole blasting in coal mine rock tunnel. Blasting, 2010, 27(4): 35 doi: 10.3963/j.issn.1001-487X.2010.04.009宗琦, 劉菁華. 煤礦巖石巷道中深孔爆破掏槽技術應用研究. 爆破, 2010, 27(4):35 doi: 10.3963/j.issn.1001-487X.2010.04.009 [20] Liang W M, Wang Y X, Chu H B, et al. Study on effect of symmetry of wedge-shaped cutting hole angle on cut blasting. Met Mine, 2009(11): 21 doi: 10.3321/j.issn:1001-1250.2009.11.006梁為民, 王以賢, 楮懷保, 等. 楔形掏槽炮孔角度對稱性對掏槽效果影響研究. 金屬礦山, 2009(11):21 doi: 10.3321/j.issn:1001-1250.2009.11.006 [21] Dai J, Du X L. Research on blasting parameters of wedge-shaped cutting for rock tunnel driving. Min Res Dev, 2011, 31(2): 90 doi: 10.13827/j.cnki.kyyk.2011.02.009戴俊, 杜曉麗. 巖石巷道楔形掏槽爆破參數研究. 礦業研究與開發, 2011, 31(2):90 doi: 10.13827/j.cnki.kyyk.2011.02.009 [22] Zhang W, Zhang D S, Shao P, et al. Fast drilling and blasting construction technology for deep high stress rock roadway. J China Coal Soc, 2011, 36(1): 43 doi: 10.13225/j.cnki.jccs.2011.01.013張煒, 張東升, 邵鵬, 等. 深部高應力巖巷快速鉆爆施工技術. 煤炭學報, 2011, 36(1):43 doi: 10.13225/j.cnki.jccs.2011.01.013 [23] Gu Y L, Li X H, Du Y G, et al. Reasonable smooth blasting factor used in tunnel. J Chongqing Univ (Nat Sci Ed) , 2005, 28(3): 95顧義磊, 李曉紅, 杜云貴, 王心飛. 隧道光面爆破合理爆破參數的確定. 重慶大學學報(自然科學版), 2005, 28(3):95 [24] Dai J. Study of the method of firing every other smooth blasting shothole in sequence. J Liaoning Tech Univ (Nat Sci) , 1996, 15(4): 429戴俊. 光爆孔間隔分段起爆方法的探討. 阜新礦業學院學報(自然科學版), 1996, 15(4):429 [25] Dai J, Yang Y Q. Calculation of shot hole separation in smooth blasting. Explos Shock Waves, 2003, 23(3): 253 doi: 10.3321/j.issn:1001-1455.2003.03.011戴俊, 楊永琦. 光面爆破相鄰炮孔存在起爆時差的炮孔間距計算. 爆炸與沖擊, 2003, 23(3):253 doi: 10.3321/j.issn:1001-1455.2003.03.011 [26] Xiao S Y, Jiang Y J, Liu Z X, et al. Hard rock blasting energy distribution and fragmentation characteristics under high earth stress. J Vib Shock, 2018, 37(15): 143 doi: 10.13465/j.cnki.jvs.2018.15.020肖思友, 姜元俊, 劉志祥, 等. 高地應力下硬巖爆破破巖特性及能量分布研究. 振動與沖擊, 2018, 37(15):143 doi: 10.13465/j.cnki.jvs.2018.15.020 -