<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于交替方向網絡進化博弈的無人機集群任務分配

彭雅蘭 段海濱 魏晨

彭雅蘭, 段海濱, 魏晨. 基于交替方向網絡進化博弈的無人機集群任務分配[J]. 工程科學學報, 2022, 44(4): 792-800. doi: 10.13374/j.issn2095-9389.2021.11.26.003
引用本文: 彭雅蘭, 段海濱, 魏晨. 基于交替方向網絡進化博弈的無人機集群任務分配[J]. 工程科學學報, 2022, 44(4): 792-800. doi: 10.13374/j.issn2095-9389.2021.11.26.003
PENG Ya-lan, DUAN Hai-bin, WEI Chen. UAV swarm task allocation algorithm based on the alternating direction method of multipliers network potential game theory[J]. Chinese Journal of Engineering, 2022, 44(4): 792-800. doi: 10.13374/j.issn2095-9389.2021.11.26.003
Citation: PENG Ya-lan, DUAN Hai-bin, WEI Chen. UAV swarm task allocation algorithm based on the alternating direction method of multipliers network potential game theory[J]. Chinese Journal of Engineering, 2022, 44(4): 792-800. doi: 10.13374/j.issn2095-9389.2021.11.26.003

基于交替方向網絡進化博弈的無人機集群任務分配

doi: 10.13374/j.issn2095-9389.2021.11.26.003
基金項目: 科技創新2030—“新一代人工智能”重大資助項目(2018AAA0100803);國家自然科學基金資助項目(U20B2071,T2121003,91948204,U1913602)
詳細信息
    通訊作者:

    E-mail: hbduan@buaa.edu.cn

  • 中圖分類號: V279

UAV swarm task allocation algorithm based on the alternating direction method of multipliers network potential game theory

More Information
  • 摘要: 大規模無人機集群相較于單架無人機,可承擔更為復雜的“1+1>2”的任務,其中無人機集群任務分配是一個關鍵性挑戰技術難題。針對無人機集群任務分配問題,本文提出了一種基于交替方向網絡進化博弈算法。首先,考慮無人機集群異類資源約束和執行能力因素,給出了無人機集群任務分配的數學公式描述,并基于網絡進化博弈構建了無人機集群任務分配博弈模型。其次,結合單架無人機的能力特性與任務集特征,利用交替方向策略求解單機局部最優執行效能。將無人機定義為博弈參與者,無人機集群任務分配問題轉化為求解網絡進化博弈納什均衡,每架無人機通過與鄰域內個體的信息交互來調整自身策略,可實現無人機集群任務分配全局任務收益的最大化。最后,通過仿真對比實驗和無人機集群三維態勢綜合驗證平臺實驗,驗證了本文所提出方法的可行性和有效性。

     

  • 圖  1  基于交替方向法網絡進化博弈的無人機集群任務分配算法流程圖

    Figure  1.  Flowchart of the unmanned aerial vehicle swarm task allocation algorithm, based on the alternating direction method of multipliers (ADMM) network potential game theory

    圖  2  任務分配結果. (a) 初始時刻; (b) 150 s; (c) 200 s; (d) 300 s

    Figure  2.  Task allocation results: (a) initial moment; (b) 150 s; (c) 200 s; (d) 300 s

    圖  3  ADMM的殘差收斂曲線

    Figure  3.  Residual convergence curve of the ADMM

    圖  4  任務完成度隨時間變化

    Figure  4.  Changes of the degree of completion of tasks over time

    圖  5  任務完成個數隨時間變化

    Figure  5.  Changes of the number of completed tasks over time

    圖  6  三維視景場景演示. (a) 任務分配場景1; (b) 任務分配場景2

    Figure  6.  3D visual simulation platform snapshots: (a) task allocation scenario 1; (b) task allocation Scenario 2

    表  1  本文所提分布式任務分配算法與拍賣算法性能指標

    Table  1.   Performance metrics of the distributed tasks allocation algorithm and CBBA algorithm

    AlgorithmTotal rewardCompletion time/sEnergy consumptionPath length /m
    Distributed tasks allocation algorithm121.52309.19356.23995.62
    CBBA algorithm100.44370.30409.181140.36
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Duan H B, Qiu H X. Unmanned Aerial Vehicle Swarm Autonomous Control Based on Swarm Intelligence. Beijing: Science Press, 2018

    段海濱, 邱華鑫. 基于群體智能的無人機集群自主控制. 北京: 科學出版社, 2018
    [2] Jain R. Efficient Market Mechanisms and Simulation-based Learning for Multi-agent Systems [Dissertation]. Berkeley: University of California, 2004
    [3] Wu S T. Cooperative Flight Control System. Beijing: Science Press, 2018

    吳森堂. 協同飛行控制系統. 北京: 科學出版社, 2018
    [4] Yang Q, Duan H B. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides. Chin J Eng, 2019, 41(12): 1599

    楊慶, 段海濱. 仿鴻雁編隊的無人機集群飛行驗證. 工程科學學報, 2019, 41(12):1599
    [5] Yan F, Zhu X P, Zhou Z, et al. Real-time task allocation for a heterogeneous multi-UAV simultaneous attack. Scientia Sinica Informationis, 2019, 49(5): 555 doi: 10.1360/N112018-00338

    嚴飛, 祝小平, 周洲, 等. 考慮同時攻擊約束的多異構無人機實時任務分配. 中國科學:信息科學, 2019, 49(5):555 doi: 10.1360/N112018-00338
    [6] Wang R, Xiao B S. Cooperative search for multi-UAVs via an improved pigeon-inspired optimization and Markov chain approach. Chin J Eng, 2019, 41(10): 1342

    王瑞, 肖冰松. 基于改進鴿群優化和馬爾可夫鏈的多無人機協同搜索方法. 工程科學學報, 2019, 41(10):1342
    [7] Luo Y L, Huang X Y, Yang J, et al. Auction mechanism-based multi-type task planning for heterogeneous UAVs swarm // 2020 IEEE 20th International Conference on Communication Technology. Nanning, 2020: 698
    [8] Zhang X L, Tan Y J, Yang Z W. Resource allocation optimization of equipment development task based on MOPSO algorithm. J Syst Eng Electron, 2019, 30(6): 1132 doi: 10.21629/JSEE.2019.06.09
    [9] Yavuz H S, G?Ktas H, ?ev?kalp H, et al. Optimal task allocation for multiple UAVs // 2020 28th Signal Processing and Communications Applications Conference (SIU). Gaziantep, 2020: 1
    [10] Li T, Shin H S, Tsourdos A. Efficient decentralized task allocation for UAV swarms in multi-target surveillance missions // 2019 International Conference on Unmanned Aircraft Systems (ICUAS). Atlanta, 2019: 61
    [11] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl, 1976, 2(1): 17 doi: 10.1016/0898-1221(76)90003-1
    [12] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 2011, 3(1): 1
    [13] Guo L. Estimation, control, and games of dynamical systems with uncertainty. Scientia Sinica Informationis, 2020, 50(9): 1327 doi: 10.1360/SSI-2020-0277

    郭雷. 不確定性動態系統的估計、控制與博弈. 中國科學:信息科學, 2020, 50(9):1327 doi: 10.1360/SSI-2020-0277
    [14] Zhen Z Y, Xing D J, Gao C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm. Aerosp Sci Technol, 2018, 76: 402 doi: 10.1016/j.ast.2018.01.035
    [15] Kim M H, Baik H, Lee S. Response threshold model based UAV search planning and task allocation. J Intell Robotic Syst, 2014, 75(3-4): 625 doi: 10.1007/s10846-013-9887-6
    [16] Choi H L, Brunet L, How J P. Consensus-based decentralized auctions for robust task allocation. IEEE Trans Robotics, 2009, 25(4): 912 doi: 10.1109/TRO.2009.2022423
    [17] Wu H S, Li H, Xiao R B. A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation. J Syst Eng Electron, 2021, 32(5): 1180 doi: 10.23919/JSEE.2021.000101
    [18] Ma Y H, Zhao Y F, Bai S Y, et al. Collaborative task allocation of heterogeneous multi-UAV based on improved CBGA algorithm // 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV). Shenzhen, 2020: 795
    [19] Fu X W, Pan J, Gao X G, et al. Task allocation method for multi-UAV teams with limited communication bandwidth // 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). Singapore, 2018: 1874
    [20] Fu X W, Feng P, Gao X G. Swarm UAVs task and resource dynamic assignment algorithm based on task sequence mechanism. IEEE Access, 2019, 7: 41090 doi: 10.1109/ACCESS.2019.2907544
    [21] Wu B B, Zhang B N, Zhao B, et al. A potential game approach to multiple UAVs 3D placement in iot communication networks // 2020 International Conference on Wireless Communications and Signal Processing (WCSP). Nanjing, 2020: 660
    [22] Marden J R, Arslan G, Shamma J S. Connections between cooperative control and potential games illustrated on the consensus problem // 2007 European Control Conference (ECC). Kos, 2007: 4604
    [23] Xie Y, Shanbhag U V. SI-ADMM: A stochastic inexact ADMM framework for stochastic convex programs. IEEE Trans Autom Control, 2020, 65(6): 2355 doi: 10.1109/TAC.2019.2953209
    [24] Jia X, Wu S T, Wen Y M, et al. A distributed decision method for missiles autonomous formation based on potential game. J Syst Eng Electron, 2019, 30(4): 738 doi: 10.21629/JSEE.2019.04.11
    [25] Zheng X B, Zhang F B, Song T, et al. Heterogeneous multi-UAV distributed task allocation based on CBBA // 2019 IEEE International Conference on Unmanned Systems. Beijing, 2019: 704
  • 加載中
圖(6) / 表(1)
計量
  • 文章訪問數:  756
  • HTML全文瀏覽量:  467
  • PDF下載量:  109
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-26
  • 網絡出版日期:  2022-03-03
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回