A review on the application of neutron and high-energy X-ray diffraction characterization methods in engineering materials
-
摘要: 以先進鋼鐵、高溫合金、鈦合金、鋁合金為代表的工程材料研究,亟待發展先進的原位微結構與應力表征技術,以揭示材料與工程部件在制備與服役過程中晶體結構與多尺度微觀組織/應力場的演化規律,闡明溫度、應力、電、磁等復雜多外場作用下包括形變損傷、相變微觀機制在內的工程材料微觀力學行為。在評述了中子與同步輻射先進原位表征技術的方法原理、裝置發展與各自優勢特點的基礎之上,總結了其在金屬材料形變與相變基礎與應用研究中的新進展及展望。Abstract: As powerful techniques for multidisciplinary research, the neutron and synchrotron radiation sources have the advantages of deep penetration and high brilliance, providing advanced and powerful tools for characterizing microstructures and revealing deformation/damage micromechanisms of materials. For research on engineering materials, such as advanced steel, superalloy, titanium alloy, and aluminum alloy, it is necessary to develop advanced in-situ microstructure and stress characterization methods to reveal the evolution of the multiscale microstructures and stress fields during preparation and service and investigate the micromechanical behaviors, including deformation damage and phase transformation, under complex external factors, such as temperature, stress, electric, and magnetic fields. The basic principles of quantitative characterization of texture and multiscale stress using neutron and X-ray diffraction (XRD) techniques were introduced in this paper. The global development and status of advanced characterization techniques based on neutron and synchrotron radiation sources were expounded. The advantages of neutron and synchrotron radiation techniques were also analyzed. The application of neutron and synchrotron-based XRD techniques in the research of structural engineering materials and components, thermoelastic martensitic transformation, and new structural materials were reviewed. The use of neutron diffraction and HE-XRD techniques on structural engineering materials mainly focuses on multiphase microstructure evolution, intergranular and interphase stress distribution in elastic/plastic zone during deformation, and temperature/stress-induced phase transformation behaviors. The microscopic stress measurement is crucial for verifying the micromechanical model of engineering structural material, which is closely related to the texture evolution during the deformation and phase transformation. The simultaneous acquisition of microscopic stress and macroscopic stress can provide essential data for the service reliability and failure evaluation standards of engineering structural materials/components. Using the μXRD characterization method with submicron resolution, through the combination of monochromatic and polychromatic diffraction analysis, the precise characterization of large stress gradient and slight orientation gradient, caused by the dislocation structures inside the grain, can be realized to achieve submicron damage evaluation. The research on thermoelastic martensitic transformation by neutron scattering (diffraction) and HE-XRD technology includes external field-assisted thermoelastic martensitic transformation, narrow hysteresis thermoelastic martensitic transformation, and colossal elastocaloric effect. Neutron diffraction and HE-XRD techniques have advantages in studying emerging structural materials, such as high-entropy alloys and heterogeneous materials, which often have complex microstructures and exhibit unique mechanical behaviors and are important for revealing their deformation and damage mechanisms. The neutron and synchrotron-based technology, combined with in-situ environmental devices, can be used to measure and analyze the multiscale microstructures/stress and service damage behaviors of key engineering components in a near-service environment. Finally, the development and application of characterization techniques based on neutron and synchrotron radiation sources have prospects.
-
Key words:
- neutron diffraction /
- high energy X-ray diffraction /
- deformation /
- phase transformation /
- stress
-
圖 3 三維微束衍射技術表征不銹鋼疲勞組織[38]. (a) 實驗示意圖; (b) 以羅德里格斯向量在LD、TD、ND方向分量表示的取向分布圖;(c) 應力分布圖
Figure 3. Characterization of fatigued stainless steel microstructure by 3D μXRD technique[38]: (a) experimental schematic diagram; (b) orientation map in terms of components of the Rodrigues vector along LD, TD, and ND; (c) stress map
Note:qFWHM means the full width at half maximum of diffraction peak;LD?TD?ND is the sample coordinate system and LD is along the tensile loading direction
圖 4 Ti3010合金拉伸力學行為的HE-XRD研究[40]. (a) 應力/硬化率?應變曲線;(b) 不同外加應力下的二維衍射圖
Figure 4. Mechanical behavior and HE-XRD studies of the microstructure for Ti3010 alloy under tension[40]: (a) uniaxial tensile true stress–strain curve with the strain hardening rate of the Ti3010 alloy; (b) 2D HE-XRD patterns at different stresses
圖 6 HE-XRD原位實驗研究NiTiNb復合材料[62]. (a) 應力?應變曲線; (b) 高能X射線二維衍射花樣; (c) 不同應力狀態下的一維衍射花樣; (d) 晶格應變?宏觀應變曲線
Figure 6. In-situ HE-XRD study on NiTiNb composite materials : (a) stress–strain curves; (b) 2D HE-XRD patterns; (c) 1D HE-XRD patterns at different stresses; (d) lattice-strain vs macro-strain curves
圖 7 高能X射線衍射原位實驗研究NiCoFeGa單晶纖維[63]. (a) Co10和Co20合金纖維的加卸載力學曲線; (b) Co10和Co20合金纖維拉伸過程中(004)A衍射峰演化; (c) Co20合金纖維不同溫度下的加卸載力學曲線; (d) Co20合金纖維循環加卸載8000周力學曲線; (e) HAADF反傅里葉變換圖像顯示L21相(品紅色)和類ω相(紅色)
Figure 7. In-situ HE-XRD study on NiCoFeGa single crystal fiber: (a) loading-unloading stress-strain curves of Co10 and Co20 fibres; (b) variation in the d-spacing corresponding to the (004)A crystal plane during loading-unloading cycles for Co10 and Co15 fibres; (c) loading–unloading stress–strain curves of Co20 fibres at different temperatures; (d) cyclic loading–unloading stress–strain curves for 8000 cycles; (e) IFFT of the HAADF image showing more distinguishable L21 (magenta ellipses) and ω-like (red ellipses) structures
圖 8 共晶魚骨高熵合金及其HE-XRD原位表征. (a) 定向凝固組織SEM圖; (b) L12和B2相分布(左)及反極圖分布(右);(c) ~48%拉伸變形后的二維衍射圖;(d) 拉伸過程中的應力配分[66]
Figure 8. Hierarchically arranged herringbone EHEA microstructure and in-situ HE-XRD characterization: (a) SEM backscatter electron image showing that the microstructure is composed of columnar grains; (b) electron backscattering diffraction phase map (left) and inverse pole figure map (right); (c) selected 2D X-ray diffraction images along the full azimuthal angle (0° to 360°) at the tensile strain of ~48%; (d) real-time stress partitioning of B2 and L12 phases during tensile loading
www.77susu.com -
參考文獻
[1] Kostorz G. Neutron Scattering: Treatise on Materials Science and Technology, Volume 15. Amsterdam: Academic Press, 1979 [2] Wang Y D, Zhang Z W, Li S L, et al. Application of synchrotron-based high-energy X-ray diffraction in materials research. Mater China, 2017, 36(3): 168王沿東, 張哲維, 李時磊, 等. 同步輻射高能X射線衍射在材料研究中的應用進展. 中國材料進展, 2017, 36(3):168 [3] Staron P, Schreyer A, Clemens H, et al. Neutrons and Synchrotron Radiation in Engineering Materials Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017 [4] Noyan I C, Cohen J B. Residual Stress: Measurement by Diffraction and Interpretation. Berlin: Springer, 2013 [5] MacEwen S R, Faber Jr J, Turner A P L. The use of time-of-flight neutron diffraction to study grain interaction stresses. Acta Metall, 1983, 31(5): 657 doi: 10.1016/0001-6160(83)90082-2 [6] Lebensohn R A, Tomé C N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall Mater, 1993, 41(9): 2611 doi: 10.1016/0956-7151(93)90130-K [7] Lebensohn R A, Tomé C N. A self-consistent viscoplastic model: Prediction of rolling textures of anisotropic polycrystals. Mater Sci Eng A, 1994, 175(1-2): 71 doi: 10.1016/0921-5093(94)91047-2 [8] Clausen B, Lorentzen T, Leffers T. Self-consistent modelling of the plastic deformation off. c. c. polycrystals and its implications for diffraction measurements of internal stresses. Acta Mater, 1998, 46(9): 3087 [9] Roters F, Eisenlohr P, Bieler T R, et al. Crystal Plasticity Finite Element Methods. New Jersey: John Wiley & Sons, 2010 [10] Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater, 2010, 58(4): 1152 doi: 10.1016/j.actamat.2009.10.058 [11] Wang Y D, Peng R L, McGreevy R L. A novel method for constructing the mean field of grain-orientation-dependent residual stress. Philos Mag Lett, 2001, 81(3): 153 doi: 10.1080/09500830010017088 [12] Lorentzen T, Hutchings M, Withers P, et al. Introduction to the Characterization of Residual Stress by Neutron Diffraction. Boca Raton: CRC press, 2005 [13] Ice G E, Larson B C. 3D X‐ray crystal microscope. Adv Eng Mater, 2000, 2(10): 643 doi: 10.1002/1527-2648(200010)2:10<643::AID-ADEM643>3.0.CO;2-U [14] King A, Reischig P, Adrien J, et al. Polychromatic diffraction contrast tomography. Mater Charact, 2014, 97: 1 doi: 10.1016/j.matchar.2014.07.026 [15] McDonald S A, Reischig P, Holzner C, et al. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy. Sci Rep, 2015, 5(1): 14665 doi: 10.1038/srep14665 [16] Nagler S E, Stoica A D, Stoica G M, et al. Time-of-flight neutron diffraction (TOF-ND) analyses of the composition and minting of ancient judaean “Biblical” coins. J Anal Methods Chem, 2019, 2019: 6164058 [17] Larson B C, Yang W, Ice G E, et al. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature, 2002, 415(6874): 887 doi: 10.1038/415887a [18] Santisteban J R, Edwards L, Fizpatrick M E, et al. Engineering applications of Bragg-edge neutron transmission. Appl Phys A, 2002, 74(1): s1433 [19] Tomota Y, Luká? P, Neov D, et al. In situ neutron diffraction during tensile deformation of a ferrite-cementite steel. Acta Mater, 2003, 51(3): 805 doi: 10.1016/S1359-6454(02)00472-X [20] Jia N, Peng R L, Wang Y D, et al. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation. Acta Mater, 2006, 54(15): 3907 doi: 10.1016/j.actamat.2006.04.019 [21] Jacques P J, Furnémont Q, Lani F, et al. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Mater, 2007, 55(11): 3681 [22] Li R G, Tan Q, Wang Y K, et al. Grain-orientation-dependent phase transformation kinetics in austenitic stainless steel under low-temperature uniaxial loading. Materialia, 2021, 15: 101030 doi: 10.1016/j.mtla.2021.101030 [23] Jia N, Peng R L, Wang Y D, et al. Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling. Acta Mater, 2008, 56(4): 782 doi: 10.1016/j.actamat.2007.10.040 [24] Allen A J, Hutchings M T, Windsor C G, et al. Neutron diffraction methods for the study of residual stress fields. Adv Phys, 1985, 34(4): 445 doi: 10.1080/00018738500101791 [25] Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction. Acta Mater, 2004, 52(20): 5737 doi: 10.1016/j.actamat.2004.08.016 [26] Tomota Y, Lukas P, Harjo S, et al. In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation. Acta Mater, 2003, 51(3): 819 doi: 10.1016/S1359-6454(02)00473-1 [27] Daymond M R, Priesmeyer H G. Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modelling. Acta Mater, 2002, 50(6): 1613 doi: 10.1016/S1359-6454(02)00026-5 [28] Oliver E C, Withers P J, Daymond M R, et al. Neutron-diffraction study of stress-induced martensitic transformation in TRIP steel. Appl Phys A, 2002, 74(1): s1143 [29] Agnew S R, Yoo M H, Tomé C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater, 2001, 49(20): 4277 doi: 10.1016/S1359-6454(01)00297-X [30] Agnew S R, Tomé C N, Brown D W, et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scr Mater, 2003, 48(8): 1003 doi: 10.1016/S1359-6462(02)00591-2 [31] Proust G, Tomé C N, Jain A, et al. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast, 2009, 25(5): 861 doi: 10.1016/j.ijplas.2008.05.005 [32] Beyerlein I J, Tomé C N. A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast, 2008, 24(5): 867 doi: 10.1016/j.ijplas.2007.07.017 [33] Wang Y D, Wang X L, Stoica A D, et al. Separating the recrystallization and deformation texture components by high-energy X-rays. J Appl Crystallogr, 2002, 35(6): 684 doi: 10.1107/S0021889802015261 [34] Wang Y D, Tian H, Stoica A D, et al. The development of grain-orientation-dependent residual stresses in a cyclically deformed alloy. Nat Mater, 2003, 2(2): 101 doi: 10.1038/nmat812 [35] Wang Y D, Peng R L, McGreevy R. High anisotropy of orientation dependent residual stress in austenite of cold rolled stainless steel. Scr Mater, 1999, 41(9): 995 doi: 10.1016/S1359-6462(99)00248-1 [36] Jia N, Cong Z H, Sun X, et al. An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels. Acta Mater, 2009, 57(13): 3965 doi: 10.1016/j.actamat.2009.05.002 [37] Zhang M H, Li R G, Ding J, et al. In situ high-energy X-ray diffraction mapping of Lüders band propagation in medium-Mn transformation-induced plasticity steels. Mater Res Lett, 2018, 6(12): 662 doi: 10.1080/21663831.2018.1530698 [38] Li R G, Xie Q G, Wang Y D, et al. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction. PNAS, 2018, 115(3): 483 doi: 10.1073/pnas.1711994115 [39] Ho W F, Chen W K, Wu S C, et al. Structure, mechanical properties, and grindability of dental Ti-Zr alloys. J Mater Sci Mater M, 2008, 19(10): 3179 doi: 10.1007/s10856-008-3454-x [40] Zhu Z W, Xiong C Y, Wang J, et al. In situ synchrotron X-ray diffraction investigations of the physical mechanism of ultra-low strain hardening in Ti–30Zr–10Nb alloy. Acta Mater, 2018, 154: 45 doi: 10.1016/j.actamat.2018.05.034 [41] Kelekanjeri V S K G, Moss L K, Gerhardt R A, et al. Quantification of the coarsening kinetics of γ' precipitates in Waspaloy microstructures with different prior homogenizing treatments. Acta Mater, 2009, 57(16): 4658 doi: 10.1016/j.actamat.2009.06.019 [42] Jaladurgam N R, Li H J, Kelleher J, et al. Microstructure-dependent deformation behaviour of a low γ' volume fraction Ni-base superalloy studied by in situ neutron diffraction. Acta Mater, 2020, 183: 182 doi: 10.1016/j.actamat.2019.11.003 [43] Yan Z R, Tan Q, Huang H, et al. Phase evolution and thermal expansion behavior of a γ' precipitated Ni-based superalloy by synchrotron X-ray diffraction. Acta Metall Sin Engl Lett, 2022, 35(1): 93 doi: 10.1007/s40195-021-01321-2 [44] Webster P J, Ziebeck K R A, Town S L, et al. Magnetic order and phase transformation in Ni2MnGa. Philos Mag B, 1984, 49(3): 295 doi: 10.1080/13642817408246515 [45] Brown P J, Crangle J, Kanomata T, et al. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J Phys:Condens Matter, 2002, 14(43): 10159 doi: 10.1088/0953-8984/14/43/313 [46] Richard M L, Feuchtwanger J, Allen S M, et al. Chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape-memory alloys studied with neutron diffraction. Philos Mag, 2007, 87(23): 3437 doi: 10.1080/14786430701297582 [47] Lázpita P, Barandiarán J M, Gutiérrez J, et al. Magnetic and structural properties of non-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys. Eur Phys J Spec Top, 2008, 158(1): 149 doi: 10.1140/epjst/e2008-00668-0 [48] Lázpita P, Barandiarán J M, Gutiérrez J, et al. Magnetic moment and chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys. New J Phys, 2011, 13(3): 033039 doi: 10.1088/1367-2630/13/3/033039 [49] Cong D Y, Wang Y D, Zhao X, et al. Crystal structures and textures in the hot-forged Ni?Mn?Ga shape memory alloys. Metall Mater Trans A, 2006, 37(5): 1397 doi: 10.1007/s11661-006-0084-0 [50] Zheludev A, Shapiro S M, Wochner P, et al. Phonon anomaly, central peak, and microstructures in Ni2MnGa. Phys Rev B, 1995, 51(17): 11310 doi: 10.1103/PhysRevB.51.11310 [51] Zheludev A, Shapiro S M, Wochner P, et al. Precursor effects and premartensitic transformation in Ni2MnGa. Phys Rev B, 1996, 54(21): 15045 doi: 10.1103/PhysRevB.54.15045 [52] Wang Y D, Brown D W, Choo H, et al. Experimental evidence of stress-field-induced selection of variants in Ni?Mn?Ga ferromagnetic shape-memory alloys. Phys Rev B, 2007, 75(17): 174404 doi: 10.1103/PhysRevB.75.174404 [53] Nie Z H, Peng R L, Johansson S, et al. Direct evidence of detwinning in polycrystalline Ni?Mn?Ga ferromagnetic shape memory alloys during deformation. J Appl Phys, 2008, 104(10): 103519 doi: 10.1063/1.3020534 [54] Nie Z H, Cong D Y, Liu D M, et al. Large internal stress-assisted twin-boundary motion in Ni2MnGa ferromagnetic shape memory alloy. Appl Phys Lett, 2011, 99(14): 141907 doi: 10.1063/1.3645626 [55] Hao S J, Cui L S, Jiang D Q, et al. Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis. Appl Phys Lett, 2013, 102(23): 231905 doi: 10.1063/1.4809954 [56] Hao S J, Cui L S, Chen Z H, et al. A novel stretchable coaxial NiTi‐sheath/Cu‐core composite with high strength and high conductivity. Adv Mater, 2013, 25(8): 1199 doi: 10.1002/adma.201203762 [57] Hao S J, Cui L S, Jiang D Q, et al. Superelastic memory effect in in situ NbTi-nanowire-NiTi nanocomposite. Appl Phys Lett, 2012, 101(17): 173115 doi: 10.1063/1.4764538 [58] Hao S J, Jiang D Q, Cui L S, et al. Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite. Appl Phys Lett, 2011, 99(8): 084103 doi: 10.1063/1.3629768 [59] Wang D P, Chen X, Nie Z H, et al. Transition in superelasticity for Ni55-xCoxFe18Ga27 alloys due to strain glass transition. EPL, 2012, 98(4): 46004 doi: 10.1209/0295-5075/98/46004 [60] Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science, 2013, 339(6124): 1191 doi: 10.1126/science.1228602 [61] Chen H Y, Wang Y D, Nie Z H, et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat Mater, 2020, 19(7): 712 doi: 10.1038/s41563-020-0645-4 [62] Cong D Y, Xiong W X, Planes A, et al. Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys. Phys Rev Lett, 2019, 122(25): 255703 doi: 10.1103/PhysRevLett.122.255703 [63] Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater, 2020, 32(49): 2004029 doi: 10.1002/adma.202004029 [64] Gordon J V, Lim R E, Wilkin M J, et al. Evaluating the grain-scale deformation behavior of a single-phase FCC high entropy alloy using synchrotron high energy diffraction microscopy. Acta Mater, 2021, 215: 117120 doi: 10.1016/j.actamat.2021.117120 [65] Shi Y J, Li S L, Lee T L, et al. In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy. Mater Sci Eng A, 2020, 771: 138555 doi: 10.1016/j.msea.2019.138555 [66] Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys. Science, 2021, 373(6557): 912 doi: 10.1126/science.abf6986 [67] Li R G, Wang Y K, Xu N, et al. Unveiling the origins of work-hardening enhancement and mechanical instability in laser shock peened titanium. Acta Mater, 2022, 229: 117810 doi: 10.1016/j.actamat.2022.117810 [68] Ma Z W, Ren Y, Li R G, et al. Cryogenic temperature toughening and strengthening due to gradient phase structure. Mater Sci Eng A, 2018, 712: 358 doi: 10.1016/j.msea.2017.11.107 [69] Zhang Z W, Feng Y F, Tan Q, et al. Residual stress distribution in Ni-based superalloy turbine discs during fabrication evaluated by neutron/X-ray diffraction measurement and thermomechanical simulation. Mater Des, 2019, 166: 107603 doi: 10.1016/j.matdes.2019.107603 [70] Fitzpatrick M E, Hutchings M T, Withers P J. Separation of macroscopic, elastic mismatch and thermal expansion misfit stresses in metal matrix composite quenched plates from neutron diffraction measurements. Acta Mater, 1997, 45(12): 4867 doi: 10.1016/S1359-6454(97)00209-7 [71] Feng Z, Wang X L, Spooner S, et al. A finite element model for residual stress in repair welds [J/OL]. OSTI. GOV Online (1996-7-21) [2021-11-25].https://doi.org/10.2172/244602 -