<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

62Sn36Pb2Ag組裝焊點長期貯存界面化合物生長動力學及壽命預測

張賀 馮佳運 叢森 王尚 安榮 吳朗 田艷紅

張賀, 馮佳運, 叢森, 王尚, 安榮, 吳朗, 田艷紅. 62Sn36Pb2Ag組裝焊點長期貯存界面化合物生長動力學及壽命預測[J]. 工程科學學報, 2023, 45(3): 400-406. doi: 10.13374/j.issn2095-9389.2021.11.14.002
引用本文: 張賀, 馮佳運, 叢森, 王尚, 安榮, 吳朗, 田艷紅. 62Sn36Pb2Ag組裝焊點長期貯存界面化合物生長動力學及壽命預測[J]. 工程科學學報, 2023, 45(3): 400-406. doi: 10.13374/j.issn2095-9389.2021.11.14.002
ZHANG He, FENG Jia-yun, CONG Sen, WANG Shang, AN Rong, WU Lang, TIAN Yan-hong. Long-term storage life prediction and growth kinetics of intermetallic compounds in 62Sn36Pb2Ag solder joints[J]. Chinese Journal of Engineering, 2023, 45(3): 400-406. doi: 10.13374/j.issn2095-9389.2021.11.14.002
Citation: ZHANG He, FENG Jia-yun, CONG Sen, WANG Shang, AN Rong, WU Lang, TIAN Yan-hong. Long-term storage life prediction and growth kinetics of intermetallic compounds in 62Sn36Pb2Ag solder joints[J]. Chinese Journal of Engineering, 2023, 45(3): 400-406. doi: 10.13374/j.issn2095-9389.2021.11.14.002

62Sn36Pb2Ag組裝焊點長期貯存界面化合物生長動力學及壽命預測

doi: 10.13374/j.issn2095-9389.2021.11.14.002
基金項目: 國家自然科學基金資助項目(U2241223);黑龍江省“頭雁”團隊經費資助項目(HITTY-20190013)
詳細信息
    通訊作者:

    E-mail: tianyh@hit.edu.cn

  • 中圖分類號: TB383.1

Long-term storage life prediction and growth kinetics of intermetallic compounds in 62Sn36Pb2Ag solder joints

More Information
  • 摘要: Sn基合金焊接接頭是電子產品不可或缺的關鍵部位,是實現電子元器件功能化的基礎,電子整機失效往往由于焊點的損傷所導致,焊點的壽命預測對電子產品的可靠性研究具有重要意義。金屬間化合物(IMC)厚度是衡量焊點質量的重要參數,以IMC層厚度為關鍵性能退化參數,以62Sn36Pb2Ag組裝的小型方塊平面封裝(QFP)器件焊點為研究對象,采用掃描電子顯微鏡對在94、120和150 °C三種溫度貯存不同時間后的焊點微觀形貌進行表征,測量了IMC層的厚度,基于阿倫尼烏斯方程建立了雙側界面金屬間化合物生長動力學模型。并以其作為關鍵性能退化函數,通過對初始IMC厚度進行正態分布擬合獲得失效密度函數,進而獲得可靠度函數對焊點的長期貯存失效壽命進行了預測。研究結果有望對長期貯存焊點的壽命預測方式提供新的思路,為62Sn36Pb2Ag釬料的可靠應用提供試驗和數據支撐。

     

  • 圖  1  再流焊后焊點微觀組織形貌. (a) 整體形貌; (b) 焊點位置放大; (c) Cu引線側界面放大; (d) PCB側界面放大

    Figure  1.  Microstructure morphology of the solder joint after reflow soldering: (a) overall view; (b) enlarged image at the solder joint; (c) enlarged image at the interface between Cu and the solder; (d) enlarged image at the interface between Cu/Ni/Au and the solder

    圖  2  不同貯存溫度及貯存時間下Cu引線側界面微觀組織

    Figure  2.  Microstructure at the Cu lead side interface after storing at different temperatures for different times

    圖  3  不同貯存溫度及貯存時間下PCB側界面微觀組織

    Figure  3.  Microstructure at the Cu lead side interface after storing at different temperatures for different times

    圖  4  不同溫度下焊點雙側界面處IMC厚度隨時間平方根變化. (a~c) Cu引線側; (d~f) PCB側

    Figure  4.  Variation of the IMC thickness with the increase of the square root of the aging time at different sides and temperatures: (a–c) Cu lead side; (d–f) PCB side

    圖  5  貯存試驗中不同側IMC生長的阿倫尼烏斯圖. (a) Cu引線側; (b) PCB側

    Figure  5.  Arrhenius plot for the growth of IMCs during storage at different sides: (a) Cu lead side; (b) PCB side

    圖  6  焊點可靠度隨貯存時間變化

    Figure  6.  Variation of reliability with aging time

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Li Z B, Wang D, Hu D A, et al. High temperature resistant aging stability of lead-free solder joints by TLP bonding. J Mater Eng, 2021, 49(10): 82

    李正兵, 王德, 胡德安, 等. 耐高溫瞬時液相連接無鉛釬焊接頭的時效穩定性. 材料工程, 2021, 49(10): 82
    [2] Chou T T, Fleshman C J, Chen H, et al. Improving thermal shock response of interfacial IMCs in Sn–Ag–Cu joints by using ultrathin-Ni/Pd/Au metallization in 3D-IC packages. J Mater Sci Mater Electron, 2019, 30(3): 2342 doi: 10.1007/s10854-018-0507-x
    [3] Kavitha M, Mahmoud Z H, Kishore K H, et al. Application of steinberg model for vibration lifetime evaluation of Sn–Ag–Cu-based solder joints in power semiconductors. IEEE Trans Compon Packag Manuf Technol, 2021, 11(3): 444 doi: 10.1109/TCPMT.2021.3051318
    [4] Hu S H, Lin T C, Kao C L, et al. Effects of bismuth additions on mechanical property and microstructure of SAC-Bi solder joint under current stressing. Microelectron Reliab, 2021, 117: 114041 doi: 10.1016/j.microrel.2021.114041
    [5] Adetunji O R, Ashimolowo R A, Aiyedun P O, et al. Tensile, hardness and microstructural properties of Sn–Pb solder alloys. Mater Today Proc, 2021, 44: 321 doi: 10.1016/j.matpr.2020.09.656
    [6] Werner M, Weinberg K. Experimental investigation of microstructural effects in Sn–Pb solder accumulated during ten years of service life. Micro Nanosyst, 2021, 13(2): 170 doi: 10.2174/1876402912999200518104018
    [7] Wang F J, Li D Y, Tian S, et al. Interfacial behaviors of Sn–Pb, Sn–Ag–Cu Pb-free and mixed Sn–Ag–Cu/Sn–Pb solder joints during electromigration. Microelectron Reliab, 2017, 73: 106 doi: 10.1016/j.microrel.2017.04.031
    [8] Ji X, An Q, Xia Y P, et al. Maximum shear stress-controlled uniaxial tensile deformation and fracture mechanisms and constitutive relations of Sn–Pb eutectic alloy at cryogenic temperatures. Mater Sci Eng A, 2021, 819: 141523 doi: 10.1016/j.msea.2021.141523
    [9] Ding Y, Shen K, Zhang R. Influence of Ag element in 62Sn36Pb2Ag on properties of AgCu/SnPbAg /CuBe solder joint. Trans China Weld Inst, 2011, 32(8): 65

    丁穎, 申坤, 張冉. 62Sn36Pb2Ag 釬料中Ag元素對AgCu/SnPbAg/CuBe焊縫性能的影響. 焊接學報, 2011, 32(8):65
    [10] Liu X W. Analysis and prevention of virtual welding in electronic product production // 2018 China High-end SMT Academic Conference Proceedings. Suzhou, 2018, 7: 199

    劉顯文. 電子產品生產中虛焊分析及預防 // 2018中國高端SMT學術會議論文集. 蘇州, 2018, 7: 199
    [11] Xiao H, Li X Y, Li F H. Growth kinetic of intermetallic compounds and failure behavior for SnAgCu/Cu solder joints subjected to thermal cycling. J Mater Eng, 2010, 38(10): 38 doi: 10.3969/j.issn.1001-4381.2010.10.009

    肖慧, 李曉延, 李鳳輝. 熱循環條件下SnAgCu/Cu焊點金屬間化合物生長及焊點失效行為. 材料工程, 2010, 38(10):38 doi: 10.3969/j.issn.1001-4381.2010.10.009
    [12] Madanipour H, Kim Y R, Kim C U, et al. Study of electromigration in Sn–Ag–Cu micro solder joint with Ni interfacial layer. J Alloys Compd, 2021, 862: 158043 doi: 10.1016/j.jallcom.2020.158043
    [13] Li Q H, Li C F, Zhang W, et al. Microstructural evolution and failure mechanism of 62Sn36Pb2Ag/Cu solder joint during thermal cycling. Microelectron Reliab, 2019, 99: 12 doi: 10.1016/j.microrel.2019.05.015
    [14] Qiao Y Y, Ma H T, Yu F Y, et al. Quasi-in-situ observation on diffusion anisotropy dominated asymmetrical growth of Cu–Sn IMCs under temperature gradient. Acta Mater, 2021, 217: 117168 doi: 10.1016/j.actamat.2021.117168
    [15] Wang H Z, Hu X W, Jiang X X. Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn–3.0Ag–0. 5Cu composite solder joints. Mater Charact, 2020, 163: 110287
    [16] Gui Z X, Hu X W, Jiang X X, et al. Interfacial reaction, wettability, and shear strength of ultrasonic-assisted lead-free solder joints prepared using Cu–GNSs-doped flux. J Mater Sci Mater Electron, 2021, 32(19): 24507 doi: 10.1007/s10854-021-06929-9
    [17] Wang J N, Chen J S, Zhang Z Y, et al. Effects of doping trace Ni element on interfacial behavior of Sn/Ni (polycrystal/single-crystal) joints. Solder Surf Mo Technol, 2022, 34(2): 124 doi: 10.1108/SSMT-08-2021-0053
    [18] Qin F, Bie X R, Chen S, et al. Vibration lifetime modelling of PBGA solder joints under random vibration loading. J Vib Shock, 2021, 40(2): 164

    秦飛, 別曉銳, 陳思, 等. 隨機振動載荷下塑封球柵陣列含鉛焊點疲勞壽命模型. 振動與沖擊, 2021, 40(2):164
    [19] Cui J, Zhang K, Zhao D, et al. Microstructure and shear properties of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal cycling. Sci Reports, 2021, 11: 6297
    [20] Chao B, Chae S H, Zhang X F, et al. Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing. Acta Mater, 2007, 55(8): 2805 doi: 10.1016/j.actamat.2006.12.019
    [21] Li J, Xu H B, Hokka J, et al. Finite element analyses and lifetime predictions for SnAgCu solder interconnections in thermal shock tests. Solder Surf Mo Technol, 2011, 23(3): 161 doi: 10.1108/09540911111146917
    [22] Jin L Y, Sun H Y, Zhou T, et al. LGA solder joint reliability and thermal fatigue life prediction. Electron Compon Mater, 2021, 40(9): 893

    金玲玥, 孫海燕, 周婷, 等. LGA焊點可靠性分析及熱疲勞壽命預測. 電子元件與材料, 2021, 40(9):893
    [23] Li Y, Tian Y H, Cong S, et al. Multi-scale finite element analysis into fatigue lives of various component solder joints on printed circuit board. J Mech Eng, 2019, 55(6): 54 doi: 10.3901/JME.2019.06.054

    李躍, 田艷紅, 叢森, 等. PCB組裝板多器件焊點疲勞壽命跨尺度有限元計算. 機械工程學報, 2019, 55(6):54 doi: 10.3901/JME.2019.06.054
    [24] Syed A. Predicting solder joint reliability for thermal, power, and bend cycle within 25% accuracy // 2001 Proceedings 51st Electronic Components and Technology Conference. Orlando, 2001: 255
    [25] Tian R Y, Hang C J, Tian Y H, et al. Brittle fracture induced by phase transformation of Ni–Cu–Sn intermetallic compounds in Sn–3Ag–0.5Cu/Ni solder joints under extreme temperature environment. J Alloys Compd, 2019, 777: 463
    [26] Tian R Y, Hang C J, Tian Y H, et al. Brittle fracture of Sn–37Pb solder joints induced by enhanced intermetallic compound growth under extreme temperature changes. J Mater Process Technol, 2019, 268: 1 doi: 10.1016/j.jmatprotec.2019.01.006
    [27] Peng L. Research on Long-Life Storage Reliability of Multilayer Ceramic Capcatior [Dissertation]. Harbin: Harbin Institute of Technology, 2016

    彭磊. 多層瓷介電容器長期貯存壽命可靠性研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016
    [28] Lu C G, Wei Z Q, Qiao H X, et al. Reliability life analysis of reinforced concrete in a salt corrosion environment based on a three-parameter Weibull distribution. Chin J Eng, 2021, 43(4): 512

    路承功, 魏智強, 喬紅霞, 等. 基于3參數Weibull分布鋼筋混凝土鹽腐蝕環境中可靠性壽命分析. 工程科學學報, 2021, 43(4):512
  • 加載中
圖(6)
計量
  • 文章訪問數:  612
  • HTML全文瀏覽量:  314
  • PDF下載量:  43
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-14
  • 網絡出版日期:  2021-12-21
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回