Long-term storage life prediction and growth kinetics of intermetallic compounds in 62Sn36Pb2Ag solder joints
-
摘要: Sn基合金焊接接頭是電子產品不可或缺的關鍵部位,是實現電子元器件功能化的基礎,電子整機失效往往由于焊點的損傷所導致,焊點的壽命預測對電子產品的可靠性研究具有重要意義。金屬間化合物(IMC)厚度是衡量焊點質量的重要參數,以IMC層厚度為關鍵性能退化參數,以62Sn36Pb2Ag組裝的小型方塊平面封裝(QFP)器件焊點為研究對象,采用掃描電子顯微鏡對在94、120和150 °C三種溫度貯存不同時間后的焊點微觀形貌進行表征,測量了IMC層的厚度,基于阿倫尼烏斯方程建立了雙側界面金屬間化合物生長動力學模型。并以其作為關鍵性能退化函數,通過對初始IMC厚度進行正態分布擬合獲得失效密度函數,進而獲得可靠度函數對焊點的長期貯存失效壽命進行了預測。研究結果有望對長期貯存焊點的壽命預測方式提供新的思路,為62Sn36Pb2Ag釬料的可靠應用提供試驗和數據支撐。
-
關鍵詞:
- 62Sn36Pb2Ag /
- 小型方塊平面封裝器件 /
- 金屬間化合物 /
- 軟釬焊 /
- 長期貯存 /
- 壽命預測
Abstract: Tin-based alloy solder joints are an indispensable key part of electronic products and the basis of realizing the functionalization of electronic components. The failure of an electronic product is often caused by solder joint damage. Life prediction of the solder joint is of great significance for the reliability research of electronic products. The intermetallic compound (IMC) thickness is an important parameter to evaluate the quality of solder joints. This study takes the thickness of the IMC layer and the assembly solder joints of the 62Sn36Pb2Ag QFP device as the key performance degradation parameter and the research object, respectively. After the reflowing process, Cu6Sn5 and Cu3Sn IMC phases were observed at the copper lead side, and the (CuxNi1-x)6Sn5 phase was observed at the PCB side. The evolution of interfacial microstructures was observed by a scanning electron microscope (SEM). The thickness of the IMC layer after storage at 94, 120, and 150 °C for different periods (1, 4, 9, 16, 25, 36, 49 days) was monitored. The growth process of the IMC is controlled by diffusion. As the storage time increases, the thickness of the IMC layer gradually increases. The growth rate of the IMC layer increases with the increase of the storage temperature because of the higher diffusion coefficient. Based on the Arrhenius equation, the growth kinetics model of the IMC with a bilateral interface is established. The failure density function is obtained by fitting the initial IMC thickness with a normal distribution, and the reliability function is then obtained to predict the long-term storage failure life of QFP assembly solder joints. Finally, this work calculates the median life and characteristic life of QFP assembly solder joints to be 16092 years and 17471 years, respectively. These results are expected to provide a new way to predict the life of solder joints stored for a long time and provide experimental and data support for the reliable application of the 62Sn36Pb2Ag solder.-
Key words:
- 62Sn36Pb2Ag /
- QFP device /
- intermetallic compounds /
- soldering /
- long-term storage /
- life prediction
-
圖 1 再流焊后焊點微觀組織形貌. (a) 整體形貌; (b) 焊點位置放大; (c) Cu引線側界面放大; (d) PCB側界面放大
Figure 1. Microstructure morphology of the solder joint after reflow soldering: (a) overall view; (b) enlarged image at the solder joint; (c) enlarged image at the interface between Cu and the solder; (d) enlarged image at the interface between Cu/Ni/Au and the solder
www.77susu.com -
參考文獻
[1] Li Z B, Wang D, Hu D A, et al. High temperature resistant aging stability of lead-free solder joints by TLP bonding. J Mater Eng, 2021, 49(10): 82李正兵, 王德, 胡德安, 等. 耐高溫瞬時液相連接無鉛釬焊接頭的時效穩定性. 材料工程, 2021, 49(10): 82 [2] Chou T T, Fleshman C J, Chen H, et al. Improving thermal shock response of interfacial IMCs in Sn–Ag–Cu joints by using ultrathin-Ni/Pd/Au metallization in 3D-IC packages. J Mater Sci Mater Electron, 2019, 30(3): 2342 doi: 10.1007/s10854-018-0507-x [3] Kavitha M, Mahmoud Z H, Kishore K H, et al. Application of steinberg model for vibration lifetime evaluation of Sn–Ag–Cu-based solder joints in power semiconductors. IEEE Trans Compon Packag Manuf Technol, 2021, 11(3): 444 doi: 10.1109/TCPMT.2021.3051318 [4] Hu S H, Lin T C, Kao C L, et al. Effects of bismuth additions on mechanical property and microstructure of SAC-Bi solder joint under current stressing. Microelectron Reliab, 2021, 117: 114041 doi: 10.1016/j.microrel.2021.114041 [5] Adetunji O R, Ashimolowo R A, Aiyedun P O, et al. Tensile, hardness and microstructural properties of Sn–Pb solder alloys. Mater Today Proc, 2021, 44: 321 doi: 10.1016/j.matpr.2020.09.656 [6] Werner M, Weinberg K. Experimental investigation of microstructural effects in Sn–Pb solder accumulated during ten years of service life. Micro Nanosyst, 2021, 13(2): 170 doi: 10.2174/1876402912999200518104018 [7] Wang F J, Li D Y, Tian S, et al. Interfacial behaviors of Sn–Pb, Sn–Ag–Cu Pb-free and mixed Sn–Ag–Cu/Sn–Pb solder joints during electromigration. Microelectron Reliab, 2017, 73: 106 doi: 10.1016/j.microrel.2017.04.031 [8] Ji X, An Q, Xia Y P, et al. Maximum shear stress-controlled uniaxial tensile deformation and fracture mechanisms and constitutive relations of Sn–Pb eutectic alloy at cryogenic temperatures. Mater Sci Eng A, 2021, 819: 141523 doi: 10.1016/j.msea.2021.141523 [9] Ding Y, Shen K, Zhang R. Influence of Ag element in 62Sn36Pb2Ag on properties of AgCu/SnPbAg /CuBe solder joint. Trans China Weld Inst, 2011, 32(8): 65丁穎, 申坤, 張冉. 62Sn36Pb2Ag 釬料中Ag元素對AgCu/SnPbAg/CuBe焊縫性能的影響. 焊接學報, 2011, 32(8):65 [10] Liu X W. Analysis and prevention of virtual welding in electronic product production // 2018 China High-end SMT Academic Conference Proceedings. Suzhou, 2018, 7: 199劉顯文. 電子產品生產中虛焊分析及預防 // 2018中國高端SMT學術會議論文集. 蘇州, 2018, 7: 199 [11] Xiao H, Li X Y, Li F H. Growth kinetic of intermetallic compounds and failure behavior for SnAgCu/Cu solder joints subjected to thermal cycling. J Mater Eng, 2010, 38(10): 38 doi: 10.3969/j.issn.1001-4381.2010.10.009肖慧, 李曉延, 李鳳輝. 熱循環條件下SnAgCu/Cu焊點金屬間化合物生長及焊點失效行為. 材料工程, 2010, 38(10):38 doi: 10.3969/j.issn.1001-4381.2010.10.009 [12] Madanipour H, Kim Y R, Kim C U, et al. Study of electromigration in Sn–Ag–Cu micro solder joint with Ni interfacial layer. J Alloys Compd, 2021, 862: 158043 doi: 10.1016/j.jallcom.2020.158043 [13] Li Q H, Li C F, Zhang W, et al. Microstructural evolution and failure mechanism of 62Sn36Pb2Ag/Cu solder joint during thermal cycling. Microelectron Reliab, 2019, 99: 12 doi: 10.1016/j.microrel.2019.05.015 [14] Qiao Y Y, Ma H T, Yu F Y, et al. Quasi-in-situ observation on diffusion anisotropy dominated asymmetrical growth of Cu–Sn IMCs under temperature gradient. Acta Mater, 2021, 217: 117168 doi: 10.1016/j.actamat.2021.117168 [15] Wang H Z, Hu X W, Jiang X X. Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn–3.0Ag–0. 5Cu composite solder joints. Mater Charact, 2020, 163: 110287 [16] Gui Z X, Hu X W, Jiang X X, et al. Interfacial reaction, wettability, and shear strength of ultrasonic-assisted lead-free solder joints prepared using Cu–GNSs-doped flux. J Mater Sci Mater Electron, 2021, 32(19): 24507 doi: 10.1007/s10854-021-06929-9 [17] Wang J N, Chen J S, Zhang Z Y, et al. Effects of doping trace Ni element on interfacial behavior of Sn/Ni (polycrystal/single-crystal) joints. Solder Surf Mo Technol, 2022, 34(2): 124 doi: 10.1108/SSMT-08-2021-0053 [18] Qin F, Bie X R, Chen S, et al. Vibration lifetime modelling of PBGA solder joints under random vibration loading. J Vib Shock, 2021, 40(2): 164秦飛, 別曉銳, 陳思, 等. 隨機振動載荷下塑封球柵陣列含鉛焊點疲勞壽命模型. 振動與沖擊, 2021, 40(2):164 [19] Cui J, Zhang K, Zhao D, et al. Microstructure and shear properties of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal cycling. Sci Reports, 2021, 11: 6297 [20] Chao B, Chae S H, Zhang X F, et al. Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing. Acta Mater, 2007, 55(8): 2805 doi: 10.1016/j.actamat.2006.12.019 [21] Li J, Xu H B, Hokka J, et al. Finite element analyses and lifetime predictions for SnAgCu solder interconnections in thermal shock tests. Solder Surf Mo Technol, 2011, 23(3): 161 doi: 10.1108/09540911111146917 [22] Jin L Y, Sun H Y, Zhou T, et al. LGA solder joint reliability and thermal fatigue life prediction. Electron Compon Mater, 2021, 40(9): 893金玲玥, 孫海燕, 周婷, 等. LGA焊點可靠性分析及熱疲勞壽命預測. 電子元件與材料, 2021, 40(9):893 [23] Li Y, Tian Y H, Cong S, et al. Multi-scale finite element analysis into fatigue lives of various component solder joints on printed circuit board. J Mech Eng, 2019, 55(6): 54 doi: 10.3901/JME.2019.06.054李躍, 田艷紅, 叢森, 等. PCB組裝板多器件焊點疲勞壽命跨尺度有限元計算. 機械工程學報, 2019, 55(6):54 doi: 10.3901/JME.2019.06.054 [24] Syed A. Predicting solder joint reliability for thermal, power, and bend cycle within 25% accuracy // 2001 Proceedings 51st Electronic Components and Technology Conference. Orlando, 2001: 255 [25] Tian R Y, Hang C J, Tian Y H, et al. Brittle fracture induced by phase transformation of Ni–Cu–Sn intermetallic compounds in Sn–3Ag–0.5Cu/Ni solder joints under extreme temperature environment. J Alloys Compd, 2019, 777: 463 [26] Tian R Y, Hang C J, Tian Y H, et al. Brittle fracture of Sn–37Pb solder joints induced by enhanced intermetallic compound growth under extreme temperature changes. J Mater Process Technol, 2019, 268: 1 doi: 10.1016/j.jmatprotec.2019.01.006 [27] Peng L. Research on Long-Life Storage Reliability of Multilayer Ceramic Capcatior [Dissertation]. Harbin: Harbin Institute of Technology, 2016彭磊. 多層瓷介電容器長期貯存壽命可靠性研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2016 [28] Lu C G, Wei Z Q, Qiao H X, et al. Reliability life analysis of reinforced concrete in a salt corrosion environment based on a three-parameter Weibull distribution. Chin J Eng, 2021, 43(4): 512路承功, 魏智強, 喬紅霞, 等. 基于3參數Weibull分布鋼筋混凝土鹽腐蝕環境中可靠性壽命分析. 工程科學學報, 2021, 43(4):512 -