<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于樹突神經網絡的低軌衛星智能感知路由算法

劉洋 王麗娜

劉洋, 王麗娜. 基于樹突神經網絡的低軌衛星智能感知路由算法[J]. 工程科學學報, 2023, 45(3): 465-474. doi: 10.13374/j.issn2095-9389.2021.11.08.007
引用本文: 劉洋, 王麗娜. 基于樹突神經網絡的低軌衛星智能感知路由算法[J]. 工程科學學報, 2023, 45(3): 465-474. doi: 10.13374/j.issn2095-9389.2021.11.08.007
LIU Yang, WANG Li-na. LEO satellite intelligent-sensing routing algorithm based on a dendrite network[J]. Chinese Journal of Engineering, 2023, 45(3): 465-474. doi: 10.13374/j.issn2095-9389.2021.11.08.007
Citation: LIU Yang, WANG Li-na. LEO satellite intelligent-sensing routing algorithm based on a dendrite network[J]. Chinese Journal of Engineering, 2023, 45(3): 465-474. doi: 10.13374/j.issn2095-9389.2021.11.08.007

基于樹突神經網絡的低軌衛星智能感知路由算法

doi: 10.13374/j.issn2095-9389.2021.11.08.007
基金項目: 國家自然科學基金資助項目(61701020);北京科技大學順德研究生院科技創新專項資金資助項目(BK19BF009)
詳細信息
    通訊作者:

    E-mail: wln_ustb@126.com

  • 中圖分類號: TN915

LEO satellite intelligent-sensing routing algorithm based on a dendrite network

More Information
  • 摘要: 在低軌衛星網絡中,衛星運行速度快、運行周期較短,星間鏈路動態變化。為了及時感知星間鏈路狀態并選擇正確的路由,提出一種基于樹突神經網絡的低軌衛星智能感知路由算法,通過衛星之間的可視性約束分析星間建鏈情況,實現星間鏈路態勢感知;通過實時構造訓練集,利用樹突神經網絡自動調整全局衛星網絡鏈路的權值,進而優化傳統迪杰斯特拉(Dijkstra)算法,實現星間鏈路質量感知,給出智能路由決策;通過周期性監測衛星網絡拓撲,實時修正初始路由路徑。仿真結果表明,基于樹突神經網絡的路由算法復雜度低,路徑時延、時延抖動及丟包率均低于傳統啟發式路由算法和Dijkstra路由算法。

     

  • 圖  1  STK中構建的星座圖

    Figure  1.  Constellation diagram constructed in STK

    圖  2  星下點軌跡圖

    Figure  2.  Under-satellite point trajectory diagram

    圖  3  算法流程圖

    Figure  3.  Algorithm flowchart

    圖  4  某時刻衛星相對位置示意圖

    Figure  4.  Image of the relative position of the satellite at a certain moment

    圖  5  DD算法模型

    Figure  5.  DD algorithm model

    圖  6  樹突神經網絡擬合圖

    Figure  6.  Dendritic network fitting graph

    圖  7  選擇下一跳衛星節點的概率

    Figure  7.  Probability of selecting the next hop satellite node

    圖  8  相同源節點至目節點的路由跳數對比

    Figure  8.  Comparison of route hops

    圖  9  端到端平均時延對比

    Figure  9.  End-to-end average delay comparison

    圖  11  端到端平均時延抖動對比

    Figure  11.  End-to-end average delay jitter comparison

    圖  10  端到端平均丟包率對比

    Figure  10.  End-to-end average packet loss rate comparison

    表  1  Walker參數設置

    Table  1.   Parameter setting of the Walker constellation

    TypeNumber of sats
    per plane
    Number of planesInterplane spacingRAAN
    spread
    Delta881360°
    下載: 導出CSV

    表  2  鏈路參數設置

    Table  2.   Parameter setting of the link

    ${\rm{Dela}}{{\rm{y}}_{{\rm{max}}} }$/ ms${\rm{Los}}{{\rm{s}}_{{\rm{max}}} }$${\rm{Jitte}}{{\rm{r}}_{{\rm{max}}} }$
    1000.0005${\text{3} }{\text{.6} } \times {\text{1} }{ {\text{0} }^{ {{ - 4} } } }$
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Peng J, Sun M Y, Teng X Q. 6G vision and application scenario outlook. China Ind Inf Technol, 2020(9): 18 doi: 10.3969/j.issn.1674-9138.2020.09.003

    彭健, 孫美玉, 滕學強. 6G愿景及應用場景展望. 中國工業和信息化, 2020(9):18 doi: 10.3969/j.issn.1674-9138.2020.09.003
    [2] Wu S G, Wang H Y, Wang Y, et al. Research and analysis of low-orbit satellite network routing technology. Satellites Networks, 2021(9): 66

    吳署光, 王宏艷, 王宇, 等. 低軌衛星網絡路由技術研究分析. 衛星與網絡, 2021(9):66
    [3] Shao F W. Research on the Link Route Technology of the Inter-satellite Link Network of the Satellite Navigation System [Dissertation]. Beijing: University of Chinese Academy of Sciences, 2017

    邵豐偉. 衛星導航系統星間鏈路網絡建鏈路由技術研究[學位論文]. 北京: 中國科學院大學, 2017
    [4] Huang J H. Research on Optimal Design Technology of Inter-Satellite Link Networks in Global Navigation Satellite Systems [Dissertation]. Changsha: National University of Defense Technology, 2018

    黃今輝. 衛星導航系統星間鏈路網絡優化設計技術研究[學位論文]. 長沙: 國防科技大學, 2018
    [5] Hao L C, Ren P Y, Du Q H. Satellite QoS routing algorithm based on energy aware and load balancing // International Conference on Wireless Communications and Signal Processing. Nanjing, 2020: 685
    [6] Gao H, Wang L, Huang W D, et al. Routing optimization method for fast return of data on overseas satellites in Beidou Global Navigation Satellite System. Chin Space Sci Technol, 2018, 38(2): 9 doi: 10.16708/j.cnki.1000-758x.2018.0002

    高賀, 王玲, 黃文德, 等. 北斗全球衛星導航系統境外星數據快速回傳的路由優化方法. 中國空間科學技術, 2018, 38(2):9 doi: 10.16708/j.cnki.1000-758x.2018.0002
    [7] Liao G Y. Research on Routing Algorithm of Low-orbit Satellite Network Based on Inter-Satellite Link [Dissertation]. Chongqing: Chongqing University of Posts and Telecommunications, 2020

    廖光燕. 基于星間鏈路的低軌衛星網絡路由算法研究[學位論文]. 重慶: 重慶郵電大學, 2020
    [8] Li X T, Zhang Y S. Artificial intelligence routing method suitable for SDN network suitable for LEO satellites. Electron Meas Technol, 2020, 43(22): 109 doi: 10.19651/j.cnki.emt.2005049

    李新桐, 張亞生. 一種適用于低軌衛星的SDN網絡人工智能路由方法. 電子測量技術, 2020, 43(22):109 doi: 10.19651/j.cnki.emt.2005049
    [9] Liu H Y, Sun F C, Li H B, et al. A satellite network QoS routing scheme based on machine learning. J Central South Univ Sci Technol, 2013, 44 (Suppl 2): 263

    劉賀語, 孫富春, 李洪波, 等. 一種基于機器學習的衛星網絡QoS路由機制. 中南大學學報(自然科學版), 2013, 44 (增刊2): 263
    [10] Wang X T, Dai Z Q, Xu Z. LEO satellite network routing algorithm based on reinforcement learning // 2021 IEEE 4th International Conference on Electronics Technology. Chengdu, 2021: 1105
    [11] Tu Z, Zhou H C, Li K, et al. A routing optimization method for software-defined SGIN based on deep reinforcement learning // 2019 IEEE Globecom Workshops. Waikoloa, 2019: 1
    [12] Yang Y, Lv G H, Zhao H, et al. Survey on deep learning applicatons in software defined networking research. J Softw, 2020, 31(7): 2184 doi: 10.13328/j.cnki.jos.006039

    楊洋, 呂光宏, 趙會, 等. 深度學習在軟件定義網絡研究中的應用綜述. 軟件學報, 2020, 31(7):2184 doi: 10.13328/j.cnki.jos.006039
    [13] Gao H S, Tang X, Cao W B. Loop-free routing algorithm based on deep neural network. Radio Eng, 2022, 52(1): 101 doi: 10.3969/j.issn.1003-3106.2022.01.015

    高會生, 唐驍, 曹旺斌. 基于深度神經網絡的無環路由算法. 無線電工程, 2022, 52(1):101 doi: 10.3969/j.issn.1003-3106.2022.01.015
    [14] Wu Y S. Deep reinforcement learning routing for dynamic topology networks. Telecommun Eng, 2021, 61(6): 659

    伍元勝. 面向動態拓撲網絡的深度強化學習路由技術. 電訊技術, 2021, 61(6):659
    [15] Zhang L, Yan F, Zhang Y Y, et al. A routing algorithm based on link state information for LEO satellite networks // 2020 IEEE Globecom Workshops. Taipei, 2020: 1
    [16] Liu X, Xie J S, Chen S W. Link quality aware routing scheme in LEO satellite network. Astronaut Syst Eng Technol, 2020, 4(2): 33

    劉洵, 謝金森, 陳雙武. 鏈路狀態感知的低軌衛星網絡路由機制. 宇航總體技術, 2020, 4(2):33
    [17] Chen Y, Zhao L F, Liu H J, et al. Analysis of configuration and maintenance strategy of LEO walker constellation. J Astronaut, 2019, 40(11): 1296 doi: 10.3873/j.issn.1000-1328.2019.11.005

    陳雨, 趙靈峰, 劉會杰, 等. 低軌Walker星座構型演化及維持策略分析. 宇航學報, 2019, 40(11):1296 doi: 10.3873/j.issn.1000-1328.2019.11.005
    [18] Wang W D, Wang C, Wang H W, et al. Dynamic cache allocation routing strategy of Internet of Things satellite node based on traffic prediction. J Commun, 2020, 41(2): 25 doi: 10.11959/j.issn.1000-436x.2020038

    王衛東, 王程, 王慧文, 等. 基于流量預測的物聯網衛星節點動態緩存分配路由策略. 通信學報, 2020, 41(2):25 doi: 10.11959/j.issn.1000-436x.2020038
    [19] Zhang L, Yan F, Zhang Y Y, et al. LEO satellite routing algorithm based on inter-satellite link state information. Aerosp Shanghai Chin Engl, 2021, 38(4): 92

    張路, 燕鋒, 章躍躍, 等. 基于星間鏈路狀態的低軌衛星網絡路由算法. 上海航天(中英文), 2021, 38(4):92
    [20] Li W, Sun L, Wang J Q, et al. Key technologies to enable 5G and TSN coordination for industrial automation. Chin J Eng, 2022, 44(6): 1044

    李衛, 孫雷, 王健全, 等. 面向工業自動化的5G與TSN協同關鍵技術. 工程科學學報, 2022, 44(6):1044
    [21] Luo Z Y. Research of Routing Technology Based on Machine Learning in Integrated Satellite-Terrestrial Information Network [Dissertation]. Chengdu: University of Electronic Science and Technology of China, 2021

    羅澤耀. 天地一體化網絡下基于機器學習的路由技術研究[學位論文]. 成都: 電子科技大學, 2021
    [22] Yin F J, Chu Q S. Research on QoS routing based on improved ant colony algorithm. J Liaoning Univ Nat Sci Ed, 2020, 47(4): 312 doi: 10.16197/j.cnki.lnunse.2020.04.005

    尹鳳杰, 褚群森. 基于改進蟻群算法的QoS路由研究. 遼寧大學學報(自然科學版), 2020, 47(4):312 doi: 10.16197/j.cnki.lnunse.2020.04.005
    [23] Zhao J R, Liu J, Zhang R, et al. Optimization of QoS routing on LEO satellite network based on ant colony algorithm. Radio Commun Technol, 2021, 47(5): 590 doi: 10.3969/j.issn.1003-3114.2021.05.011

    趙晶蕊, 劉江, 張然, 等. 基于蟻群算法的LEO衛星網絡QoS優化路由. 無線電通信技術, 2021, 47(5):590 doi: 10.3969/j.issn.1003-3114.2021.05.011
    [24] Liu G, Wang J. Dendrite net: A white-box module for classification, regression, and system identification. IEEE Trans Cybern,https://doi.org/10.1109/TCYB.2021.3124328
    [25] Liu G. It may be time to improve the neuron of artificial neural network [J/OL]. TechRxiv preprint (2021-7-21) [2021-11-08].https://doi.org/10.36227/techrxiv.12477266
    [26] Liu G, Wang J. A relation spectrum inheriting Taylor series: Muscle synergy and coupling for hand. Front Inform Technol Electron Eng, 2022, 23(1): 145 doi: 10.1631/FITEE.2000578
    [27] Valadarsky A, Schapira M, Shahaf D, et al. Learning to route // Proceedings of the 16th ACM Workshop on Hot Topics in Networks. Hangzhou, 2017: 185
    [28] Ma Z G, Xu X H, Liu X E. Three analytical frameworks of causal inference and their applications. Chin J Eng, 2022, 44(7): 1231

    馬忠貴, 徐曉晗, 劉雪兒. 因果推斷三種分析框架及其應用綜述. 工程科學學報, 2022, 44(7):1231
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  815
  • HTML全文瀏覽量:  333
  • PDF下載量:  120
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-08
  • 網絡出版日期:  2022-01-11
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回