Characterization of liquid seepage hysteresis and capillary diffusion behavior in unsaturated ore heap
-
摘要: 為深入理解非飽和礦堆內溶浸液毛細滲流擴散以及滲流遲滯行為,本文構建適于非飽和礦堆的毛細滲流模型,利用COMSOL multiphysics有限元數值平臺開展毛細滲流可視化模擬研究,并利用時域反射器(Time domain reflector,TDR)實時探測了非飽和堆內持液率變化,探索了基于Design Expert的毛細滲流過程多因素響應規律,討論了非飽和礦堆持液率、毛細吸力、孔隙率與噴淋強度間的潛在關聯機制。研究結果表明:孔隙率對礦堆持液率的影響高于噴淋強度,礦堆持液率隨噴淋時間的增長收斂性增加,且孔隙率小的礦堆需要更長的時間才能達到穩態持液;不考慮溶液噴淋強度影響時,礦堆持液率與孔隙比、水力傳導系數呈正相關;特別是在噴淋初期(0~20 s),噴淋強度、水力傳導系數和孔隙比對礦堆持液率的影響更為顯著;初步構建了考慮氣液兩相運移的非飽和礦堆溶液毛細滲流模型;毛細吸力的變化對孔隙率較小的礦堆更敏感;噴淋強度較大、孔隙比越小時,礦堆底部的毛細吸力越大,更易達到穩態持液狀態。Abstract: To deeply understand the capillary diffusion and seepage hysteresis behavior of the leaching solution in unsaturated ore heaps, this study builds a capillary seepage model suitable for an unsaturated ore heap by employing the COMSOL multiphysics finite element numerical platform to perform the capillary seepage visual simulation. A time-domain reflector is used to detect in-situ liquid holdup changes in the unsaturated heap in real-time, and multifactor response regulations of the capillary seepage process are explored based on a design expert. The potential connection mechanism among the liquid holdup, capillary suction, porosity, and irrigation rate of unsaturated ore heaps is also discussed. Research results show that the heap porosity has an obvious impact on the heap liquid holdup than the irrigation intensity. The increased convergence of the liquid holdup improves with the spraying time, and the ore heap with small porosity takes a longer time to reach a steady status of the liquid holdup. When the effect of the liquid irrigation is not considered, the heap liquid holdup is positively correlated with the porosity ratio and hydraulic conductivity. Especially in the initial stage of the irrigation period (0–20 s), the effects of the irrigation rate, hydraulic conductivity, and porosity ratio on the ore heap liquid holdup are more significant. An unsaturated ore pile solution capillary seepage model considering the gas?liquid two-phase migration is preliminarily constructed. The capillary suction is observed to be more sensitive in the ore heap with lesser porosity. The larger the irrigation rate and the smaller the porosity, the greater is the capillary suction at the bottom of the ore heap, and it is easier for the ore heap to reach a steady state of the liquid holdup.
-
圖 2 非飽和礦堆溶液毛細上升實驗裝置構成. (a)毛細擴散實驗實物圖; (b)時域反射儀; (c)實驗裝置結構構成
Figure 2. Composition of the experimental device for the capillary rise of the unsaturated ore pile solution: (a) macroscale image of the capillary diffusion experiment; (b) time-domain reflector; (c) detailed structure of the experimental device
表 1 數學模型的關鍵參數
Table 1. Key parameters of the mathematical model
Parameter Value Liquid density, ρw/(kg·m?3) 1 × 103 Gas density, ρa/(kg·m?3) 1.28 Liquid viscosity, ηw/(Pa·s) 10?3 Gas viscosity, ηa/(Pa·s) 1.81 × 10?5 Gravitational acceleration, g/(m·s?2) 9.82 Residual liquid holdup, θr/% 0.01 1st Size parameters of VGM model, α/m?1 1.89 2nd Size parameters of VGM model, N/m?1 2.811 3rd Size parameters of VGM model, M/m?1 1?1/N 表 2 不同噴淋強度和孔隙率條件下溶液毛細滲流模擬方案
Table 2. Experimental scheme of the liquid capillarity seepage under different irrigation rate and porosity condition
Experimental group Irrigation rate/(L·m?2·h?1) Porosity ratio Hydraulic conductivity/(cm·s?1) A1 0 1.040816 0.02 A2 0 1.173913 0.08 A3 10 1.040816 0.02 A4 10 1.173913 0.08 A5 50 1.040816 0.02 A6 50 1.173913 0.08 表 3 不同孔隙率條件下溶液毛細滲流模擬方案
Table 3. Experimental scheme of the liquid capillarity seepage under different porosity condition
Experimental group Irrigation rate/(L·m?2·h?1) Porosity/
%Porosity ratio Hydraulic conductivity/(cm·s?1) B1 0 51.0 1.040816 0.02 B2 0 51.5 1.061856 0.03 B3 0 52.0 1.083333 0.04 B4 0 52.5 1.105263 0.05 B5 0 53.0 1.12766 0.06 B6 0 53.5 1.150538 0.07 B7 0 54.0 1.173913 0.08 www.77susu.com -
參考文獻
[1] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143 [2] Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores - A brief overview. Hydrometallurgy, 2016, 165: 206 doi: 10.1016/j.hydromet.2015.09.001 [3] Yin S H, Wang L M. Special Mining Technology. Beijing: Metallurgical Industry Press, 2021尹升華, 王雷鳴. 特殊采礦技術. 北京: 冶金工業出版社, 2021 [4] Yin S H, Wang L M, Wu A X, et al. Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities. Int J Miner Metall Mater, 2019, 26(11): 1337 doi: 10.1007/s12613-019-1826-5 [5] Chen H, Chen K, Yang M H, et al. A fractal capillary model for multiphase flow in porous media with hysteresis effect. Int J Multiph Flow, 2020, 125: 103208 doi: 10.1016/j.ijmultiphaseflow.2020.103208 [6] McBride D, Ilankoon I M S K, Neethling S J, et al. Preferential flow behaviour in unsaturated packed beds and heaps: Incorporating into a CFD model. Hydrometallurgy, 2017, 171: 402 doi: 10.1016/j.hydromet.2017.06.008 [7] Ma J W. Experimental Study of Permeability Characteristics of Ore Bulk Media in Heap Leaching Process [Dissertation]. Changsha: Central South University, 2005馬俊偉. 堆浸工藝中礦巖散體介質的滲透特性試驗研究[學位論文]. 長沙: 中南大學, 2005 [8] Shi Z, Zhang Y, Liu M C, et al. Dynamic contact angle hysteresis in liquid bridges. Colloids Surf A Physicochem Eng Aspects, 2018, 555: 365 doi: 10.1016/j.colsurfa.2018.07.004 [9] Ilankoon I M S K, Neethling S J. Hysteresis in unsaturated flow in packed beds and heaps. Miner Eng, 2012, 35: 1 doi: 10.1016/j.mineng.2012.05.007 [10] Ilankoon I M S K, Neethling S J, Huang Z B, et al. Improved inter-particle flow models for predicting heap leaching hydrodynamics. Miner Eng, 2017, 111: 108 doi: 10.1016/j.mineng.2017.06.004 [11] Wang L M. Study of Liquid Holdup Behavior and Leaching Process Enhancement Mechanism in Agglomerated Heaps [Dissertation]. Beijing: University of Science and Technology Beijing, 2021王雷鳴. 制粒礦堆持液行為及其浸出過程強化機制研究[學位論文]. 北京: 北京科技大學, 2021 [12] Li X. Research on Micro and Meso Void Structure and Preferential Flow Characteristics of Loess Based on CT [Dissertation]. Xi'an: Changan University, 2020李鑫. 基于CT的黃土微細觀空隙結構及優先流特性研究[學位論文]. 西安: 長安大學, 2020 [13] Tu W B, Wang Y, Tang Y. Capillary performance of metal porous media for heat transfer enhancement. CIESC J, 2016, 67(7): 2761涂文斌, 王勻, 湯勇. 氣液分離強化傳熱多孔結構毛細上升特征. 化工學報, 2016, 67(7):2761 [14] Lima L R P A. Liquid axial dispersion and holdup in column leaching. Miner Eng, 2006, 19(1): 37 doi: 10.1016/j.mineng.2005.05.020 [15] Miao X X, Wu A X, Yang B H. Recent advances in heap leaching research: Characterisation and modelling. Chin J Nonferrous Met, 2018, 28(11): 2327繆秀秀, 吳愛祥, 楊保華. 堆浸水力學研究前沿: 結構表征與模型仿真. 中國有色金屬學報, 2018, 28(11):2327 [16] Wang L M, Yin S H, Wu A X. Visualization of flow behavior in ore-segregated packed beds with fine interlayers. Int J Miner Metall Mater, 2020, 27(7): 900 doi: 10.1007/s12613-020-2059-3 [17] Fagan M A, Ngoma I E, Chiume R A, et al. MRI and gravimetric studies of hydrology in drip irrigated heaps and its effect on the propagation of bioleaching micro-organisms. Hydrometallurgy, 2014, 150: 210 doi: 10.1016/j.hydromet.2014.04.022 [18] Xue Z L, Gan D Q, Zhang Y Z, et al. Non-destructive detection of solution flow behavior during heap leaching considering interface micro-infiltration. Chin J Nonferrous Met, 2020, 30(7): 1730 doi: 10.11817/j.ysxb.1004.0609.2020-36440薛振林, 甘德清, 張友志, 等. 界面微滲透作用下浸堆內部滲流場無損探測. 中國有色金屬學報, 2020, 30(7):1730 doi: 10.11817/j.ysxb.1004.0609.2020-36440 [19] Bouffard S C, Dixon D G. Modeling pyrite bioleaching in isothermal test columns with the HeapSim model. Hydrometallurgy, 2009, 95(3-4): 215 doi: 10.1016/j.hydromet.2008.06.001 [20] Liu W Y, Hashemzadeh M. Solution flow behavior in response to key operating parameters in heap leaching. Hydrometallurgy, 2017, 169: 183 doi: 10.1016/j.hydromet.2017.01.007 [21] Wu A X, Yin S H, Yang B H, et al. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy, 2007, 87(3-4): 124 doi: 10.1016/j.hydromet.2007.03.001 [22] Yin S H, Wang L M, Chen X, et al. Seepage law of solution inside ore granular under condition of different heap constructions. J Central South Univ (Sci Technol) , 2018, 49(4): 949尹升華, 王雷鳴, 陳勛, 等. 不同堆體結構下礦巖散體內溶液滲流規律. 中南大學學報(自然科學版), 2018, 49(4):949 [23] Ma T R, Zhang K N, Shen W J, et al. Discontinuous and continuous Galerkin methods for compressible single-phase and two-phase flow in fractured porous media. Adv Water Resour, 2021, 156: 104039 doi: 10.1016/j.advwatres.2021.104039 [24] Zulian P, Sch?dle P, Karagyaur L, et al. Comparison and application of non-conforming mesh models for flow in fractured porous media using dual Lagrange multipliers. J Comput Phys, 2022, 449: 110773 doi: 10.1016/j.jcp.2021.110773 [25] Chen X, Yin S H, Yan R F, et al. Evolution characteristics of mesoscopic pore structure of weathered crust elutiondeposited rare earth ore under solution seepage. Chin J Eng, 2021, 43(10): 1283陳勛, 尹升華, 嚴榮富, 等. 滲流作用下風化殼淋積型稀土礦細觀孔隙結構演化特征. 工程科學學報, 2021, 43(10):1283 [26] Li T, Wu A X, Feng Y T, et al. Coupled DEM-LBM simulation of saturated flow velocity characteristics in column leaching. Miner Eng, 2018, 128: 36 doi: 10.1016/j.mineng.2018.08.027 [27] Yin S H, Song Q, Chen W, et al. Pore model reconstruction of copper sulfide ore agglomerate and simulation of solution seepage. Chin J Eng, 2021, 43(4): 495尹升華, 宋慶, 陳威, 等. 硫化銅礦粒孔隙模型重構與溶液滲流模擬. 工程科學學報, 2021, 43(4):495 [28] He H L, Aogu K L, Li M, et al. A review of time domain reflectometry (TDR) applications in porous media. Adv Agron, 2021, 168: 83 [29] Wessolek G, Stoffregen H, T?umer K. Persistency of flow patterns in a water repellent sandy soil - Conclusions of TDR readings and a time-delayed double tracer experiment. J Hydrol, 2009, 375(3-4): 524 doi: 10.1016/j.jhydrol.2009.07.003 [30] Wu A X, Li X W, Yin S H, et al. Interface effects of unsaturated seepage in dump leaching. J Univ Sci Technol Beijing, 2013, 35(7): 844吳愛祥, 李希雯, 尹升華, 等. 礦堆非飽和滲流中的界面作用. 北京科技大學學報, 2013, 35(7):844 [31] McBride D, Gebhardt J E, Croft T N, et al. Modeling the hydrodynamics of heap leaching in sub-zero temperatures. Miner Eng, 2016, 90: 77 doi: 10.1016/j.mineng.2015.11.005 [32] Yin S H, Chen X. Influence factors of moisture content in heap leaching. Chin J Nonferrous Met, 2015, 25(7): 1961 doi: 10.19476/j.ysxb.1004.0609.2015.07.028尹升華, 陳勛. 堆浸體系含水率的影響因素. 中國有色金屬學報, 2015, 25(7):1961 doi: 10.19476/j.ysxb.1004.0609.2015.07.028 [33] Wang L M, Yin S H, Deng B N. Understanding the effect of stepwise irrigation on liquid holdup and hysteresis behavior of unsaturated ore heap. Minerals, 2021, 11(11): 1180 doi: 10.3390/min11111180 [34] Wang L M, Yin S H, Wu A X, et al. Effect of stratified stacks on extraction and surface morphology of copper sulfides. Hydrometallurgy, 2020, 191: 105226 doi: 10.1016/j.hydromet.2019.105226 [35] Zhang Y, Yu T T, Zhang T, et al. Experimental study of the permeability evolution of fractured mudstone under complex stress paths. Chin J Eng, 2021, 43(7): 903張玉, 于婷婷, 張通, 等. 復雜應力路徑下裂隙泥巖滲透演化規律試驗研究. 工程科學學報, 2021, 43(7):903 [36] Cui C Z, Wei Z J, Liu L J, et al. Mechanism of fines migration in low-salinity waterflooding and its development effect. Chin J Eng, 2019, 41(6): 719崔傳智, 韋自健, 劉力軍, 等. 低礦化度水驅中的微粒運移機理及其開發效果. 工程科學學報, 2019, 41(6):719 [37] Han J W. Study on Particle Size Evolution and Permeability of Ore Heap Bulk under Stress Chemical Coupling [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2018韓建文. 應力—化學耦合作用下礦堆散體粒級演化及滲透性研究[學位論文]. 贛州: 江西理工大學, 2018 -