<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

非飽和礦堆溶液滲流遲滯與毛細擴散行為表征

王雷鳴 李希雯 尹升華 周根茂 李輝 劉培正 鄧博納

王雷鳴, 李希雯, 尹升華, 周根茂, 李輝, 劉培正, 鄧博納. 非飽和礦堆溶液滲流遲滯與毛細擴散行為表征[J]. 工程科學學報, 2023, 45(3): 359-368. doi: 10.13374/j.issn2095-9389.2021.11.02.006
引用本文: 王雷鳴, 李希雯, 尹升華, 周根茂, 李輝, 劉培正, 鄧博納. 非飽和礦堆溶液滲流遲滯與毛細擴散行為表征[J]. 工程科學學報, 2023, 45(3): 359-368. doi: 10.13374/j.issn2095-9389.2021.11.02.006
WANG Lei-ming, LI Xi-wen, YIN Sheng-hua, ZHOU Gen-mao, LI Hui, LIU Pei-zheng, DENG Bo-na. Characterization of liquid seepage hysteresis and capillary diffusion behavior in unsaturated ore heap[J]. Chinese Journal of Engineering, 2023, 45(3): 359-368. doi: 10.13374/j.issn2095-9389.2021.11.02.006
Citation: WANG Lei-ming, LI Xi-wen, YIN Sheng-hua, ZHOU Gen-mao, LI Hui, LIU Pei-zheng, DENG Bo-na. Characterization of liquid seepage hysteresis and capillary diffusion behavior in unsaturated ore heap[J]. Chinese Journal of Engineering, 2023, 45(3): 359-368. doi: 10.13374/j.issn2095-9389.2021.11.02.006

非飽和礦堆溶液滲流遲滯與毛細擴散行為表征

doi: 10.13374/j.issn2095-9389.2021.11.02.006
基金項目: 金屬礦山安全與健康國家重點實驗室開放基金資助項目(2021-JSKSSYS-01);綠色化工過程教育部重點實驗室開放基金資助項目(GCP202108);國家自然科學基金資助項目(52034001,51734001);國家科技部重點領域創新團隊資助項目(2018RA400);國家自然科學基金青年項目(52204124);國家博士后創新人才支持計劃(BX20220036);中國博士后科學基金面上資助項目(2022M710356)
詳細信息
    通訊作者:

    E-mail: heavenli1@163.com

  • 中圖分類號: TD853

Characterization of liquid seepage hysteresis and capillary diffusion behavior in unsaturated ore heap

More Information
  • 摘要: 為深入理解非飽和礦堆內溶浸液毛細滲流擴散以及滲流遲滯行為,本文構建適于非飽和礦堆的毛細滲流模型,利用COMSOL multiphysics有限元數值平臺開展毛細滲流可視化模擬研究,并利用時域反射器(Time domain reflector,TDR)實時探測了非飽和堆內持液率變化,探索了基于Design Expert的毛細滲流過程多因素響應規律,討論了非飽和礦堆持液率、毛細吸力、孔隙率與噴淋強度間的潛在關聯機制。研究結果表明:孔隙率對礦堆持液率的影響高于噴淋強度,礦堆持液率隨噴淋時間的增長收斂性增加,且孔隙率小的礦堆需要更長的時間才能達到穩態持液;不考慮溶液噴淋強度影響時,礦堆持液率與孔隙比、水力傳導系數呈正相關;特別是在噴淋初期(0~20 s),噴淋強度、水力傳導系數和孔隙比對礦堆持液率的影響更為顯著;初步構建了考慮氣液兩相運移的非飽和礦堆溶液毛細滲流模型;毛細吸力的變化對孔隙率較小的礦堆更敏感;噴淋強度較大、孔隙比越小時,礦堆底部的毛細吸力越大,更易達到穩態持液狀態。

     

  • 圖  1  柱浸顆粒堆物理模型構建及網格劃分

    Figure  1.  Physical model and mesh of the packed heap in column leaching

    圖  2  非飽和礦堆溶液毛細上升實驗裝置構成. (a)毛細擴散實驗實物圖; (b)時域反射儀; (c)實驗裝置結構構成

    Figure  2.  Composition of the experimental device for the capillary rise of the unsaturated ore pile solution: (a) macroscale image of the capillary diffusion experiment; (b) time-domain reflector; (c) detailed structure of the experimental device

    圖  3  不同噴淋強度和孔隙比條件下持液率隨時間變化

    Figure  3.  Changes of the liquid holdup with time under different irrigation and porosity ratio conditions

    圖  4  非飽和堆毛細吸力特征–孔隙率關聯關系. (a) 堆頂毛細吸力與孔隙率間的關系; (b) 毛細吸力差值與孔隙率間的關系

    Figure  4.  Relationship of capillarity suction features and porosity of ore heap: (a) relationship between capillarity force (top of the column) and porosity; (b) relationship between capillarity force differences and porosity

    圖  5  持液率與水頭壓力(藍線)和毛細吸力(紅線)關系.(a)A1組;(b)A2組;(c)A3組;(b)A4組;(c)A5組;(b)A6組

    Figure  5.  Relationship of the liquid holdup and the pressure heap (blue) and capillarity suction (red): (a) A1 group; (b) A2 group; (c) A3 group; (d) A4 group: (e) A5 group; (f) A6 group

    圖  6  毛細吸力對噴淋強度和孔隙率的等值面特征. (a) 堆頂; (b) 堆底; (c) 毛細吸力差值

    Figure  6.  Equivalent surface characterization of the capillarity suction to the irrigation intensity and porosity: (a) top of column; (b) bottom of column; (c) differences of capillarity force

    圖  7  基于COMSOL multiphysics的礦堆內毛細吸力穩態分布特征. (a) 毛細吸力; (b) 相對滲透率

    Figure  7.  Steady distribution characterization of the capillarity suction in the ore heap relied on COMSOL Multiphysics: (a) capillarity forces; (b) relative permeability

    表  1  數學模型的關鍵參數

    Table  1.   Key parameters of the mathematical model

    ParameterValue
    Liquid density, ρw/(kg·m?3)1 × 103
    Gas density, ρa/(kg·m?3)1.28
    Liquid viscosity, ηw/(Pa·s)10?3
    Gas viscosity, ηa/(Pa·s)1.81 × 10?5
    Gravitational acceleration, g/(m·s?2)9.82
    Residual liquid holdup, θr/%0.01
    1st Size parameters of VGM model, α/m?11.89
    2nd Size parameters of VGM model, N/m?12.811
    3rd Size parameters of VGM model, M/m?11?1/N
    下載: 導出CSV

    表  2  不同噴淋強度和孔隙率條件下溶液毛細滲流模擬方案

    Table  2.   Experimental scheme of the liquid capillarity seepage under different irrigation rate and porosity condition

    Experimental groupIrrigation rate/(L·m?2·h?1)Porosity ratioHydraulic conductivity/(cm·s?1)
    A101.0408160.02
    A201.1739130.08
    A3101.0408160.02
    A4101.1739130.08
    A5501.0408160.02
    A6501.1739130.08
    下載: 導出CSV

    表  3  不同孔隙率條件下溶液毛細滲流模擬方案

    Table  3.   Experimental scheme of the liquid capillarity seepage under different porosity condition

    Experimental groupIrrigation rate/(L·m?2·h?1)Porosity/
    %
    Porosity ratioHydraulic conductivity/(cm·s?1)
    B1051.01.0408160.02
    B2051.51.0618560.03
    B3052.01.0833330.04
    B4052.51.1052630.05
    B5053.01.127660.06
    B6053.51.1505380.07
    B7054.01.1739130.08
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143

    尹升華, 王雷鳴, 吳愛祥, 等. 我國銅礦微生物浸出技術的研究進展. 工程科學學報, 2019, 41(2):143
    [2] Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores - A brief overview. Hydrometallurgy, 2016, 165: 206 doi: 10.1016/j.hydromet.2015.09.001
    [3] Yin S H, Wang L M. Special Mining Technology. Beijing: Metallurgical Industry Press, 2021

    尹升華, 王雷鳴. 特殊采礦技術. 北京: 冶金工業出版社, 2021
    [4] Yin S H, Wang L M, Wu A X, et al. Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities. Int J Miner Metall Mater, 2019, 26(11): 1337 doi: 10.1007/s12613-019-1826-5
    [5] Chen H, Chen K, Yang M H, et al. A fractal capillary model for multiphase flow in porous media with hysteresis effect. Int J Multiph Flow, 2020, 125: 103208 doi: 10.1016/j.ijmultiphaseflow.2020.103208
    [6] McBride D, Ilankoon I M S K, Neethling S J, et al. Preferential flow behaviour in unsaturated packed beds and heaps: Incorporating into a CFD model. Hydrometallurgy, 2017, 171: 402 doi: 10.1016/j.hydromet.2017.06.008
    [7] Ma J W. Experimental Study of Permeability Characteristics of Ore Bulk Media in Heap Leaching Process [Dissertation]. Changsha: Central South University, 2005

    馬俊偉. 堆浸工藝中礦巖散體介質的滲透特性試驗研究[學位論文]. 長沙: 中南大學, 2005
    [8] Shi Z, Zhang Y, Liu M C, et al. Dynamic contact angle hysteresis in liquid bridges. Colloids Surf A Physicochem Eng Aspects, 2018, 555: 365 doi: 10.1016/j.colsurfa.2018.07.004
    [9] Ilankoon I M S K, Neethling S J. Hysteresis in unsaturated flow in packed beds and heaps. Miner Eng, 2012, 35: 1 doi: 10.1016/j.mineng.2012.05.007
    [10] Ilankoon I M S K, Neethling S J, Huang Z B, et al. Improved inter-particle flow models for predicting heap leaching hydrodynamics. Miner Eng, 2017, 111: 108 doi: 10.1016/j.mineng.2017.06.004
    [11] Wang L M. Study of Liquid Holdup Behavior and Leaching Process Enhancement Mechanism in Agglomerated Heaps [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

    王雷鳴. 制粒礦堆持液行為及其浸出過程強化機制研究[學位論文]. 北京: 北京科技大學, 2021
    [12] Li X. Research on Micro and Meso Void Structure and Preferential Flow Characteristics of Loess Based on CT [Dissertation]. Xi'an: Changan University, 2020

    李鑫. 基于CT的黃土微細觀空隙結構及優先流特性研究[學位論文]. 西安: 長安大學, 2020
    [13] Tu W B, Wang Y, Tang Y. Capillary performance of metal porous media for heat transfer enhancement. CIESC J, 2016, 67(7): 2761

    涂文斌, 王勻, 湯勇. 氣液分離強化傳熱多孔結構毛細上升特征. 化工學報, 2016, 67(7):2761
    [14] Lima L R P A. Liquid axial dispersion and holdup in column leaching. Miner Eng, 2006, 19(1): 37 doi: 10.1016/j.mineng.2005.05.020
    [15] Miao X X, Wu A X, Yang B H. Recent advances in heap leaching research: Characterisation and modelling. Chin J Nonferrous Met, 2018, 28(11): 2327

    繆秀秀, 吳愛祥, 楊保華. 堆浸水力學研究前沿: 結構表征與模型仿真. 中國有色金屬學報, 2018, 28(11):2327
    [16] Wang L M, Yin S H, Wu A X. Visualization of flow behavior in ore-segregated packed beds with fine interlayers. Int J Miner Metall Mater, 2020, 27(7): 900 doi: 10.1007/s12613-020-2059-3
    [17] Fagan M A, Ngoma I E, Chiume R A, et al. MRI and gravimetric studies of hydrology in drip irrigated heaps and its effect on the propagation of bioleaching micro-organisms. Hydrometallurgy, 2014, 150: 210 doi: 10.1016/j.hydromet.2014.04.022
    [18] Xue Z L, Gan D Q, Zhang Y Z, et al. Non-destructive detection of solution flow behavior during heap leaching considering interface micro-infiltration. Chin J Nonferrous Met, 2020, 30(7): 1730 doi: 10.11817/j.ysxb.1004.0609.2020-36440

    薛振林, 甘德清, 張友志, 等. 界面微滲透作用下浸堆內部滲流場無損探測. 中國有色金屬學報, 2020, 30(7):1730 doi: 10.11817/j.ysxb.1004.0609.2020-36440
    [19] Bouffard S C, Dixon D G. Modeling pyrite bioleaching in isothermal test columns with the HeapSim model. Hydrometallurgy, 2009, 95(3-4): 215 doi: 10.1016/j.hydromet.2008.06.001
    [20] Liu W Y, Hashemzadeh M. Solution flow behavior in response to key operating parameters in heap leaching. Hydrometallurgy, 2017, 169: 183 doi: 10.1016/j.hydromet.2017.01.007
    [21] Wu A X, Yin S H, Yang B H, et al. Study on preferential flow in dump leaching of low-grade ores. Hydrometallurgy, 2007, 87(3-4): 124 doi: 10.1016/j.hydromet.2007.03.001
    [22] Yin S H, Wang L M, Chen X, et al. Seepage law of solution inside ore granular under condition of different heap constructions. J Central South Univ (Sci Technol), 2018, 49(4): 949

    尹升華, 王雷鳴, 陳勛, 等. 不同堆體結構下礦巖散體內溶液滲流規律. 中南大學學報(自然科學版), 2018, 49(4):949
    [23] Ma T R, Zhang K N, Shen W J, et al. Discontinuous and continuous Galerkin methods for compressible single-phase and two-phase flow in fractured porous media. Adv Water Resour, 2021, 156: 104039 doi: 10.1016/j.advwatres.2021.104039
    [24] Zulian P, Sch?dle P, Karagyaur L, et al. Comparison and application of non-conforming mesh models for flow in fractured porous media using dual Lagrange multipliers. J Comput Phys, 2022, 449: 110773 doi: 10.1016/j.jcp.2021.110773
    [25] Chen X, Yin S H, Yan R F, et al. Evolution characteristics of mesoscopic pore structure of weathered crust elutiondeposited rare earth ore under solution seepage. Chin J Eng, 2021, 43(10): 1283

    陳勛, 尹升華, 嚴榮富, 等. 滲流作用下風化殼淋積型稀土礦細觀孔隙結構演化特征. 工程科學學報, 2021, 43(10):1283
    [26] Li T, Wu A X, Feng Y T, et al. Coupled DEM-LBM simulation of saturated flow velocity characteristics in column leaching. Miner Eng, 2018, 128: 36 doi: 10.1016/j.mineng.2018.08.027
    [27] Yin S H, Song Q, Chen W, et al. Pore model reconstruction of copper sulfide ore agglomerate and simulation of solution seepage. Chin J Eng, 2021, 43(4): 495

    尹升華, 宋慶, 陳威, 等. 硫化銅礦粒孔隙模型重構與溶液滲流模擬. 工程科學學報, 2021, 43(4):495
    [28] He H L, Aogu K L, Li M, et al. A review of time domain reflectometry (TDR) applications in porous media. Adv Agron, 2021, 168: 83
    [29] Wessolek G, Stoffregen H, T?umer K. Persistency of flow patterns in a water repellent sandy soil - Conclusions of TDR readings and a time-delayed double tracer experiment. J Hydrol, 2009, 375(3-4): 524 doi: 10.1016/j.jhydrol.2009.07.003
    [30] Wu A X, Li X W, Yin S H, et al. Interface effects of unsaturated seepage in dump leaching. J Univ Sci Technol Beijing, 2013, 35(7): 844

    吳愛祥, 李希雯, 尹升華, 等. 礦堆非飽和滲流中的界面作用. 北京科技大學學報, 2013, 35(7):844
    [31] McBride D, Gebhardt J E, Croft T N, et al. Modeling the hydrodynamics of heap leaching in sub-zero temperatures. Miner Eng, 2016, 90: 77 doi: 10.1016/j.mineng.2015.11.005
    [32] Yin S H, Chen X. Influence factors of moisture content in heap leaching. Chin J Nonferrous Met, 2015, 25(7): 1961 doi: 10.19476/j.ysxb.1004.0609.2015.07.028

    尹升華, 陳勛. 堆浸體系含水率的影響因素. 中國有色金屬學報, 2015, 25(7):1961 doi: 10.19476/j.ysxb.1004.0609.2015.07.028
    [33] Wang L M, Yin S H, Deng B N. Understanding the effect of stepwise irrigation on liquid holdup and hysteresis behavior of unsaturated ore heap. Minerals, 2021, 11(11): 1180 doi: 10.3390/min11111180
    [34] Wang L M, Yin S H, Wu A X, et al. Effect of stratified stacks on extraction and surface morphology of copper sulfides. Hydrometallurgy, 2020, 191: 105226 doi: 10.1016/j.hydromet.2019.105226
    [35] Zhang Y, Yu T T, Zhang T, et al. Experimental study of the permeability evolution of fractured mudstone under complex stress paths. Chin J Eng, 2021, 43(7): 903

    張玉, 于婷婷, 張通, 等. 復雜應力路徑下裂隙泥巖滲透演化規律試驗研究. 工程科學學報, 2021, 43(7):903
    [36] Cui C Z, Wei Z J, Liu L J, et al. Mechanism of fines migration in low-salinity waterflooding and its development effect. Chin J Eng, 2019, 41(6): 719

    崔傳智, 韋自健, 劉力軍, 等. 低礦化度水驅中的微粒運移機理及其開發效果. 工程科學學報, 2019, 41(6):719
    [37] Han J W. Study on Particle Size Evolution and Permeability of Ore Heap Bulk under Stress Chemical Coupling [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2018

    韓建文. 應力—化學耦合作用下礦堆散體粒級演化及滲透性研究[學位論文]. 贛州: 江西理工大學, 2018
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  503
  • HTML全文瀏覽量:  259
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-02
  • 網絡出版日期:  2021-12-18
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回