<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋼液凝固與冷卻過程及固體鋼加熱過程鋼中非金屬夾雜物成分動力學轉變的幾個概念和特征曲線

張月鑫 張立峰 王舉金 任英 任強 楊文

張月鑫, 張立峰, 王舉金, 任英, 任強, 楊文. 鋼液凝固與冷卻過程及固體鋼加熱過程鋼中非金屬夾雜物成分動力學轉變的幾個概念和特征曲線[J]. 工程科學學報, 2023, 45(3): 369-379. doi: 10.13374/j.issn2095-9389.2021.11.01.005
引用本文: 張月鑫, 張立峰, 王舉金, 任英, 任強, 楊文. 鋼液凝固與冷卻過程及固體鋼加熱過程鋼中非金屬夾雜物成分動力學轉變的幾個概念和特征曲線[J]. 工程科學學報, 2023, 45(3): 369-379. doi: 10.13374/j.issn2095-9389.2021.11.01.005
ZHANG Yue-xin, ZHANG Li-feng, WANG Ju-jin, REN Ying, REN Qiang, YANG Wen. Concepts and characteristic curves for the kinetic transformation of nonmetallic inclusions in liquid steel during solidification and cooling and in solid steel during heating process[J]. Chinese Journal of Engineering, 2023, 45(3): 369-379. doi: 10.13374/j.issn2095-9389.2021.11.01.005
Citation: ZHANG Yue-xin, ZHANG Li-feng, WANG Ju-jin, REN Ying, REN Qiang, YANG Wen. Concepts and characteristic curves for the kinetic transformation of nonmetallic inclusions in liquid steel during solidification and cooling and in solid steel during heating process[J]. Chinese Journal of Engineering, 2023, 45(3): 369-379. doi: 10.13374/j.issn2095-9389.2021.11.01.005

鋼液凝固與冷卻過程及固體鋼加熱過程鋼中非金屬夾雜物成分動力學轉變的幾個概念和特征曲線

doi: 10.13374/j.issn2095-9389.2021.11.01.005
基金項目: 國家自然科學基金資助項目(U1860206,51725402);河北省省級科技計劃資助項目(20591001D)
詳細信息
    通訊作者:

    張立峰,E-mail: zhanglifeng@ncut.edu.cn

    王舉金,E-mail: wangjujin@ncut.edu.cn

  • 中圖分類號: TF777.1

Concepts and characteristic curves for the kinetic transformation of nonmetallic inclusions in liquid steel during solidification and cooling and in solid steel during heating process

More Information
  • 摘要: 利用鋼中非金屬夾雜物成分變化的集成模型,介紹了夾雜物成分隨時間和冷卻速率的變化,提出了夾雜物成分轉變分數的概念,然后介紹了夾雜物成分轉變的等溫轉變曲線(TTT)、連續冷卻轉變曲線(CCT)和等徑轉變曲線(TDT)的概念及應用。該集成模型考慮了鋼液流動、傳熱、凝固和元素偏析,也考慮了鋼與夾雜物反應的熱力學和動力學。然后以管線鋼、重軌鋼和軸承鋼為例,進一步分析討論了鋼液凝固與冷卻過程中的冷卻速率、固體鋼加熱過程中的加熱溫度和加熱時間、鋼成分以及夾雜物尺寸等參數對夾雜物成分轉變的影響。這些概念和特征曲線能夠直觀展示在鋼液凝固冷卻過程及固體鋼加熱過程鋼中非金屬夾雜物的成分轉變,將鋼中夾雜物的控制方略從鋼液拓展到固體鋼中。

     

  • 圖  1  鋼液凝固冷卻過程中的夾雜物成分轉變的集成模型示意圖

    Figure  1.  Schematic illustration of the integrated model for the composition transformation of inclusions during the solidification and cooling of molten steel

    圖  2  在不同冶煉階段U75V重軌鋼中夾雜物成分的變化[44]

    Figure  2.  Evolution of the composition of inclusions at each production step of a U75V heavy rail steel[44]

    圖  3  固體重軌鋼中夾雜物成分在1423 K時隨保溫時間的變化[35]

    Figure  3.  Variation of inclusions in solid heavy rail steel with a holding time of 1423 K[35]

    圖  4  計算得到的管線鋼中夾雜物在連鑄過程中的成分演變[27](該圖來源于參考文獻27中圖11(b)中試樣S4的夾雜物在連鑄過程中的成分演變)

    Figure  4.  Calculated composition evolution of inclusions in pipeline steel during the continuous casting process[27] (The figure is derived from the composition evolution of inclusions of the specimen S4 during the continuous casting process in figure 11(b) of reference [27])

    圖  5  計算得到的軸承鋼中夾雜物在1498 K加熱過程中的成分演變[45](該圖來源于參考文獻[45]中圖8(b)中計算得到在1495 K加熱過程中直徑為1.5 μm的夾雜物的成分變化)

    Figure  5.  Calculated composition evolution of inclusions in the bearing steel during heating at 1498 K[45] (The figure is derived from the composition evolution of inclusions with 1.5 μm diameter calculated during heating at 1495 K in figure 8(b) of reference [45])

    圖  6  動力學模型預報的管線鋼中夾雜物成分的轉變分數.(a)不同夾雜物尺寸;(b)不同加熱溫度;(c)不同鋼中硫含量;(d)不同冷卻速率

    Figure  6.  Predicted transformation fraction for the composition of inclusions in the pipeline steel: (a) different sizes of inclusions; (b) different temperature of heating; (c) different contents of total sulfur; (d) different cooling rates

    圖  7  不同冷速條件下重軌鋼連鑄坯中夾雜物的成分. (a)多種夾雜物; (b) CaO; (c) CaS

    Figure  7.  Composition of inclusions in the heavy rail steel CC bloom with different cooling rates. (a) inclusions; (b) CaO; (c) CaS

    圖  8  重軌鋼連鑄坯中夾雜物成分的轉變分數與冷卻速率的關系

    Figure  8.  Dependency of the transformation ratio of the composition of inclusions in the heavy rail steel CC bloom on the cooling rate

    圖  9  鋼中夾雜物成分隨時間的等溫轉變曲線(dinc代表夾雜物平均直徑)

    Figure  9.  Calculated TTT curve for the composition of inclusions in steel with time (dinc represents the average diameter of inclusions)

    圖  10  鋼中夾雜物成分轉變的TTT圖

    Figure  10.  TTT diagram for the composition transformation of inclusions in the steel

    圖  11  凝固冷卻過程鋼中夾雜物的轉變計算相圖[38](該圖來源于參考文獻[38]中的圖11(a)中的部分夾雜物的相圖轉變過程)

    Figure  11.  Calculated phases transition of inclusions during the solidification and cooling of the steel[38] (The figure is derived from the phase transformation process of parts of inclusions in figure 11(a) of reference [38])

    圖  12  軸承鋼中夾雜物成分轉變的CCT曲線[39]

    Figure  12.  CCT diagram for the composition transformation of inclusions in the bearing steel[39]

    圖  13  1473 K下夾雜物尺寸和反應時間對固體鋼中夾雜物成分轉變的影響.(a)CaO; (b)CaS

    Figure  13.  Effect of the size of inclusions and reaction time on the composition transformation of inclusions in solid steel heated at 1473 K: (a) CaO; (b) CaS

    表  1  鋼中溶解元素在液態、δ和γ鋼中的擴散系數[10,4143]

    Table  1.   Diffusion coefficients of dissolved elements in liquid, δ, and γ steel[10,4143]

    Dissolved elementDiffusion coefficients
    Liquidδγ
    Al3.5×10–95.9×exp[–241186/(RT)]/100005.15×exp[–245800/(RT)]/10000
    Si4.78×10–98.0×exp[–248948/(RT)]/100000.07×exp[–243000/(RT)]/10000
    Ca3.5×10–90.76×exp[–224430/(RT)]/100000.055×exp[–249366/(RT)]/10000
    Mg3.5×10–90.76×exp[–224430/(RT)]/100000.055×exp[–249366/(RT)]/10000
    O2.7×10–90.0371×exp[–96349/(RT)]/100005.75×exp[–168454/(RT)]/10000
    S4.1×10–94.56×exp[–214639/(RT)]/100002.4×exp[–223426/(RT)]/10000
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang L F. State of the art in the control of inclusions in tire cord steels—a review. Steel Res Int, 2006, 77(3): 158 doi: 10.1002/srin.200606370
    [2] Hu Y, Chen W Q, Han H B, et al. Influence of calcium treatment on cleanness and fatigue life of 60Si2MnA spring steel. Ironmak Steelmak, 2017, 44(1): 28 doi: 10.1080/03019233.2016.1153026
    [3] Li L. Influence of non-metallic inclusion on quality of continuous casting slabs. Shandong Metall, 2021, 43(4): 21

    李玲. 非金屬夾雜物對連鑄坯質量的影響. 山東冶金, 2021, 43(4):21
    [4] Zhang L F. Discussion on the index of steel cleanliness. Steelmaking, 2019, 35(3): 1

    張立峰. 關于鋼潔凈度指數的討論. 煉鋼, 2019, 35(3):1
    [5] Williams C A, Unifantowicz P, Baluc N, et al. The formation and evolution of oxide particles in oxide-dispersion-strengthened ferritic steels during processing. Acta Mater, 2013, 61(6): 2219 doi: 10.1016/j.actamat.2012.12.042
    [6] Shi W, Yang S, Li J. Correlation between evolution of inclusions and pitting corrosion in 304 stainless steel with yttrium addition. Sci Reports, 2018, 8: 4830
    [7] Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 1. Basic concept and application. ISIJ Int, 2013, 53(12): 2110
    [8] Zhang L F. Non-metallic Inclusions in Steels: Fundamentals. Beijing: Metallurgical Industry Press, 2019

    張立峰. 鋼中非金屬夾雜物. 北京: 冶金工業出版社, 2019
    [9] Zhang L F. Non-metallic Inclusions in Steels: Industrial Practice. Beijing: Metallurgical Industry Press, 2019

    張立峰. 鋼中非金屬夾雜物: 工業實踐. 北京: 冶金工業出版社, 2019
    [10] Ren Y, Zhang L F, Li S S. Transient evolution of inclusions during calcium modification in linepipe steels. ISIJ Int, 2014, 54(12): 2772 doi: 10.2355/isijinternational.54.2772
    [11] Ren Y. Control of Inclusions in 304 Stainless Steels [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    任英. 304不銹鋼中夾雜物的控制[學位論文]. 北京: 北京科技大學, 2017
    [12] Zhang L F, Liu Y, Zhang Y, et al. Transient evolution of nonmetallic inclusions during calcium treatment of molten steel. Metall Mater Trans B, 2018, 49(4): 1841 doi: 10.1007/s11663-018-1289-5
    [13] Wu D R, Tang H L, Li Y H, et al. Effects of ladle top slag modification treatment on inclusion and electromagnetic properties of non-oriented electrical steels. Electr Eng Mater, 2016(1): 3

    吳德潤, 唐洪樂, 李玉華, 等. 鋼包頂渣改性對無取向電工鋼夾雜物和磁性能的影響. 電工材料, 2016(1):3
    [14] Zhang H J, Han C P, Liu N. Study on pertinence of refining slag and inclusions of rail steel. Sci Technol Baotou Steel, 2020, 46(5): 1 doi: 10.3969/j.issn.1009-5438.2020.05.002

    張懷軍, 韓春鵬, 劉南. 重軌鋼精煉渣與夾雜物相關性研究. 包鋼科技, 2020, 46(5):1 doi: 10.3969/j.issn.1009-5438.2020.05.002
    [15] Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel. Metall Mater Trans B, 1997, 28(5): 953 doi: 10.1007/s11663-997-0023-5
    [16] Paek M K, Do K H, Kang Y B, et al. Aluminum deoxidation equilibria in liquid iron: Part III—experiments and thermodynamic modeling of the Fe–Mn–Al–O system. Metall Mater Trans B, 2016, 47(5): 2837 doi: 10.1007/s11663-016-0728-4
    [17] Gu C, Zhao L H, Gan P. Revolution and control of Fe–Al–Ti–O complex oxide inclusions in ultralow-carbon steel during refining process. Chin J Eng, 2019, 41(6): 757

    顧超, 趙立華, 甘鵬. 超低碳鋼精煉過程中Fe–Al–Ti–O類復合氧化物夾雜的演變與控制. 工程科學學報, 2019, 41(6):757
    [18] Zhang L F, Li F, Fang W. Thermodynamic investigation for the accurate calcium addition during calcium treatment of molten steels. Steelmaking, 2016, 32(2): 1

    張立峰, 李菲, 方文. 鋼液鈣處理過程中鈣加入量精準計算的熱力學研究. 煉鋼, 2016, 32(2):1
    [19] Mizuno K, Todoroki H, Noda M, et al. Effects of Al and Ca in ferrosilicon alloys for deoxidation on inclusion composition in type 304 stainless steel. Iron Steelmak, 2001, 28: 93
    [20] Ren Y, Zhang L F. Thermodynamic model for prediction of slag–steel–inclusion reactions of 304 stainless steels. ISIJ Int, 2017, 57(1): 68 doi: 10.2355/isijinternational.ISIJINT-2016-509
    [21] Ren C Y, Zhang L F, Ren Y. A review on dissolution behavior of non-metallic inclusions in situ observed using high temperature confocal scanning laser microscope. J Iron Steel Res, 2021, 33(8): 670

    任昶宇, 張立峰, 任英. 高溫共聚焦顯微鏡原位觀察非金屬夾雜物溶解行為研究進展. 鋼鐵研究學報, 2021, 33(8):670
    [22] Zhang L, Taniguchi S. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev, 2000, 45(2): 59 doi: 10.1179/095066000101528313
    [23] Zhang G F, Ji S, Zhang L F, et al. Study on transformation of non-metallic inclusions in 20CrMnTiH gear steel during solidification and cooling. Steelmaking, 2020, 36(3): 32

    張國鋒, 季莎, 張立峰, 等. 20CrMnTiH齒輪鋼凝固和冷卻過程中非金屬夾雜物的轉變研究. 煉鋼, 2020, 36(3):32
    [24] Wang Y, Yang W, Zhang L F. Effect of cooling rate on oxide inclusions during solidification of 304 stainless steel. Steel Res Int, 2019, 90(7): 1900027 doi: 10.1002/srin.201900027
    [25] Zhang M H, Cheng L M, Yang W, et al. Study on transformation of non-metallic inclusions in sulfur-bearing gear steel during solidification and cooling process. Steelmaking, 2020, 36(1): 21

    張明海, 程禮梅, 楊文, 等. 含硫齒輪鋼凝固冷卻過程中非金屬夾雜物的轉變研究. 煉鋼, 2020, 36(1):21
    [26] Wang Y, Zhang L F, Yang W, et al. Evolution of non-metallic inclusion composition during cooling and solidification process of Q345 steel. Steelmaking, 2020, 36(2): 29

    王祎, 張立峰, 楊文, 等. Q345鋼液凝固及鑄坯冷卻過程中非金屬夾雜物的組成演變. 煉鋼, 2020, 36(2):29
    [27] Ren Q, Zhang Y X, Ren Y, et al. Prediction of spatial distribution of the composition of inclusions on the entire cross section of a linepipe steel continuous casting slab. J Mater Sci Technol, 2021, 61: 147 doi: 10.1016/j.jmst.2020.05.035
    [28] Ren Y, Zhang L F, Pistorius P C. Transformation of oxide inclusions in type 304 stainless steels during heat treatment. Metall Mater Trans B, 2017, 48(5): 2281 doi: 10.1007/s11663-017-1007-8
    [29] Cheng G, Li W F, Zhang X G, et al. Transformation of inclusions in solid GCr15 bearing steels during heat treatment. Metals, 2019, 9(6): 642 doi: 10.3390/met9060642
    [30] Li M G, Matsuura H, Tsukihashi F. Evolution of Al–Ti oxide inclusion during isothermal heating of Fe–Al–Ti alloy at 1573K (1300℃). Metall Mater Trans B, 2017, 48(3): 1915 doi: 10.1007/s11663-017-0968-y
    [31] Zhang X L, Yang S F, Li J S, et al. Transformation of oxide inclusions in stainless steel containing yttrium during isothermal heating at 1473 K. Metals, 2019, 9(9): 961 doi: 10.3390/met9090961
    [32] Zhang X L, Yang S F, Liu C S, et al. Effect of heat-treatment temperature on the interfacial reaction between oxide inclusions and Si–Mn killed steel. JOM, 2018, 70(6): 958 doi: 10.1007/s11837-018-2738-y
    [33] Wang Q Y, Zou X D, Matsuura H, et al. Evolution of inclusions during the 1473 K (1200℃) heating process of EH36 shipbuilding steel. Metall Mater Trans B, 2018, 49(1): 18 doi: 10.1007/s11663-017-1133-3
    [34] Chu Y P, Li W F, Ren Y, et al. Transformation of inclusions in linepipe steels during heat treatment. Metall Mater Trans B, 2019, 50(4): 2047 doi: 10.1007/s11663-019-01593-1
    [35] Zhang Y X, Zhang L F, Chu Y P, et al. Transformation of inclusions in a complicated-deoxidized heavy rail steels during heating. Steel Res Int, 2020, 91(9): 2000120 doi: 10.1002/srin.202000120
    [36] Liu C, Luo Y, Zhang L F, et al. Evolution of sulfides in nonoriented silicon steels during heating process. Steel Res Int, 2021, 92(4): 2000489 doi: 10.1002/srin.202000489
    [37] Zhang Y X, Zhang L F, Wang J J, et al. Prediction of composition distribution of non-metallic inclusions in a billet. Iron Steel, 2021, 56(10): 74

    張月鑫, 張立峰, 王舉金, 等. 連鑄坯全斷面非金屬夾雜物成分分布的預報. 鋼鐵, 2021, 56(10):74
    [38] Ren Q, Zhang Y X, Zhang L F, et al. Prediction on the spatial distribution of the composition of inclusions in a heavy rail steel continuous casting bloom. J Mater Res Technol, 2020, 9(3): 5648 doi: 10.1016/j.jmrt.2020.03.090
    [39] Wang J J, Zhang L F, Zhang Y X, et al. Prediction of spatial composition distribution of inclusions in the continuous casting bloom of a bearing steel under unsteady casting. ISIJ Int, 2021, 61(3): 824 doi: 10.2355/isijinternational.ISIJINT-2020-472
    [40] Chen W, Ren Y, Zhang L F. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM, 2018, 70(12): 2968 doi: 10.1007/s11837-018-3118-3
    [41] Ueshima Y, Mizoguchi S, Matsumiya T, et al. Analysis of solute distribution in dendrites of carbon steel with δ/γ transformation during solidification. Metall Trans B, 1986, 17(4): 845 doi: 10.1007/BF02657148
    [42] Zhang L F, Yang X G, Li S S, et al. Control of transverse corner cracks on low-carbon steel slabs. JOM, 2014, 66(9): 1711 doi: 10.1007/s11837-014-1112-y
    [43] Won Y M, Thomas B G. Simple model of microsegregation during solidification of steels. Metall Mater Trans A, 2001, 32(7): 1755 doi: 10.1007/s11661-001-0152-4
    [44] Chu Y P, Chen Z Y, Liu N, et al. Behavior evolution of non-metallic inclusions during production of U75V heavy rail steel. China Metall, 2018, 28(Supple 1): 83

    儲焰平, 諶智勇, 劉南, 等. U75V重軌鋼生產過程中非金屬夾雜物的行為演變. 中國冶金, 2018, 28(增刊1): 83
    [45] Wang J J, Zhang L F, Cheng G, et al. Kinetic prediction for isothermal transformation of inclusions in a bearing steel. Metall Mater Trans B, 2022, 53(1): 394 doi: 10.1007/s11663-021-02375-4
  • 加載中
圖(13) / 表(1)
計量
  • 文章訪問數:  626
  • HTML全文瀏覽量:  271
  • PDF下載量:  111
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-01
  • 網絡出版日期:  2022-01-06
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回