<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

電磁攪拌條件下結晶器內鋼液多相流動和卷渣現象的大渦模擬

李琪藍 張立峰 陳威 王亞棟 趙震 張靜

李琪藍, 張立峰, 陳威, 王亞棟, 趙震, 張靜. 電磁攪拌條件下結晶器內鋼液多相流動和卷渣現象的大渦模擬[J]. 工程科學學報, 2022, 44(4): 690-702. doi: 10.13374/j.issn2095-9389.2021.11.01.003
引用本文: 李琪藍, 張立峰, 陳威, 王亞棟, 趙震, 張靜. 電磁攪拌條件下結晶器內鋼液多相流動和卷渣現象的大渦模擬[J]. 工程科學學報, 2022, 44(4): 690-702. doi: 10.13374/j.issn2095-9389.2021.11.01.003
LI Qi-lan, ZHANG Li-feng, CHEN Wei, WANG Ya-dong, ZHAO Zhen, ZHANG Jing. Large eddy simulation on the multiphase fluid flow and slag entrainment in a continuous casting mold with electromagnetic stirring[J]. Chinese Journal of Engineering, 2022, 44(4): 690-702. doi: 10.13374/j.issn2095-9389.2021.11.01.003
Citation: LI Qi-lan, ZHANG Li-feng, CHEN Wei, WANG Ya-dong, ZHAO Zhen, ZHANG Jing. Large eddy simulation on the multiphase fluid flow and slag entrainment in a continuous casting mold with electromagnetic stirring[J]. Chinese Journal of Engineering, 2022, 44(4): 690-702. doi: 10.13374/j.issn2095-9389.2021.11.01.003

電磁攪拌條件下結晶器內鋼液多相流動和卷渣現象的大渦模擬

doi: 10.13374/j.issn2095-9389.2021.11.01.003
基金項目: 國家自然科學基金資助項目(E2021203222);河北省省級科技計劃資助項目(20591001D)
詳細信息
    通訊作者:

    張立峰,E-mail: zhanglifeng@ncut.edu.cn

    陳威,E-mail: weichen@ysu.edu.cn

  • 中圖分類號: TG142.71

Large eddy simulation on the multiphase fluid flow and slag entrainment in a continuous casting mold with electromagnetic stirring

More Information
  • 摘要: 針對大方坯連鑄結晶器內的流動和卷渣行為進行了三維數值模擬仿真,應用大渦模擬模型模擬湍流、應用VOF模型模擬渣相?鋼液和空氣?渣相?鋼液的多相流。研究對比了鋼液單相流動、渣相?鋼液兩相流動和空氣?渣相?鋼液三相流動3種模型下結晶器內的流動、鋼?渣界面液位形狀和波動及卷渣行為,并通過工業用計算機斷層成像技術(工業CT)檢測了連鑄坯中大顆粒卷渣類夾雜物數量隨著電磁攪拌電流強度的變化。結果表明,在150 A、2 Hz結晶器電磁攪拌下,3種模型得到的結晶器內鋼液流場差別較小,但在鋼?渣界面處差別較大。鋼液單相模型下鋼液表面流動速度比其他兩種模型鋼?渣界面處的速度更大。渣相?鋼液兩相模型和空氣?渣相?鋼液三相模型的卷渣速率分別為0.00118和0.00040 kg?s?1。渣相?鋼液兩相模型條件下,由于上表面即渣的頂面不能彎曲,所以鋼?渣界面處的湍動能沒有得到耗散,所以比三相模型的湍動能更大,因此其預測的卷渣速率偏大。當攪拌電流強度增大到300 A,渣相?鋼液兩相模型和空氣?渣相?鋼液三相模型的卷渣速率分別為150 A條件下的5倍和15倍;當電流頻率增大到4 Hz,渣相?鋼液兩相模型的卷渣速率變化很小,空氣?渣相?鋼液三相模型的卷渣速率降低為2 Hz條件下的1/3。因此,為了正確的模擬和預測結晶器鋼?渣界面處的卷渣行為,必須使用空氣?渣相?鋼液三相瞬態模型進行模擬仿真。

     

  • 圖  1  空氣?渣相?鋼液三相模型的物理模型尺寸和網格設置

    Figure  1.  Schematic of physical model size and mesh distribution of the steel?slag?air three-phase model

    圖  2  電磁攪拌位置示意圖及模型驗證. (a) 電磁攪拌安裝位置示意圖; (b) 結晶器中心線處磁通密度測量值與計算值的對比

    Figure  2.  Diagram of the M-EMS installing location and model validation: (a) M-EMS installing location; (b) magnetic flux density along the mold center vertical direction

    圖  3  結晶器垂直中心線上的電磁力分布

    Figure  3.  Distribution of the electromagnetic force along the vertical distance below the meniscus

    圖  4  時均速度大小分布. (a)鋼液單相模型; (b)渣相?鋼液兩相模型; (c)空氣?渣相?鋼液三相模型

    Figure  4.  Distribution of time-average velocity magnitude: (a) steel?slag single-phase model; (b) steel?slag two-phase model; (c) steel?slag?air three-phase model

    圖  5  監測點P點處鋼液3個方向上的脈動速度

    Figure  5.  Steel fluctuation velocity in different directions at monitored point P

    圖  6  彎月面時均速度分布. (a)鋼液單相模型; (b)渣相?鋼液兩相模型; (c)空氣?渣相?鋼液三相模型; (d) 彎月面在結晶器厚度中心線上的流動的速度大小

    Figure  6.  Time-average speed distribution of the meniscus: (a) steel?slag single-phase model; (b) steel?slag two-phase model; (c) steel?slag?air three-phase model; (d) time-average velocity magnitude along meniscus width center line

    圖  7  液位監測點

    Figure  7.  Monitoring points of the surface level

    圖  8  不同監測點處的液面波動. (a) P1; (b) P3

    Figure  8.  Surface fluctuations at different monitoring points: (a) P1; (b) P3

    圖  9  通過Z=0.04 m平面的凈渣相質量

    Figure  9.  Net slag mass through the horizontal plane of Z=0.04 m below the mold top surface

    圖  10  鋼?渣界面的湍動能分布. (a) 渣相?鋼液兩相模型; (b) 空氣?渣相?鋼液三項模型

    Figure  10.  Turbulence kinetic energy distribution on steel/slag interface: (a) steel?slag two-phase model; (b) steel?slag?air three-phase model

    圖  11  鋼?渣界面寬度中心線. (a) 液面瞬時位置; (b) 湍動能值

    Figure  11.  Along steel/slag interface: (a) surface transient level position; (b) turbulence kinetic energy

    圖  12  電流300 A,頻率 2 Hz的電磁攪拌條件下彎月面寬度中心線處時均速度

    Figure  12.  Time-average velocity magnitude along meniscus width center line

    圖  13  不同電流強度下通過Z=0.04 m平面的凈渣相質量

    Figure  13.  Net slag mass through the horizontal plane of Z=0.04 m below mold top surface under different current densities

    圖  14  150 A, 4 Hz下彎月面寬度中心線處時均速度大小

    Figure  14.  Time-average velocity magnitude along meniscus width center line under 150 A current intensity and 2 Hz frequency

    圖  15  不同電流頻率下通過Z=0.04 m平面的凈渣相質量

    Figure  15.  Net slag mass through the horizontal plane of Z=0.04 m below mold top surface under different current frequency

    圖  16  不同電流強度下的夾雜物形貌. (a) 100 A; (b) 300 A; (c) 600 A

    Figure  16.  Morphologies of slag entrainment inclusions with M-EMS of different current intensities: (a) 100 A; (b) 300 A; (c) 600 A

    圖  17  不同電流強度下卷渣類夾雜物的體積分數

    Figure  17.  Volume fraction of inclusions from slag entrainment in the CC bloom varied with different current intensities M-EMS

    表  1  模型尺寸及物性參數

    Table  1.   Model dimensions and material parameters

    ParametersValue ParametersValue
    Submergence depth of SEN/ mm120 Molten steel density/(kg·m?37020
    Mold length/ mm800 Molten steel viscosity/ (kg·m?1·s?10.0055
    Air phase thickness/ mm65Superheat of molten steel/ K20
    Slag phase thickness/ mm35Slag density/(kg·m?32500
    Radius of curvature/ m10.25Slag viscosity/(kg·m?1·s?10.18
    Section size/(mm×mm)280×250Liquidus temperature of molten steel/ K1727
    Casting speed/(m·min?10.62Surface tension of molten steel/(N·m?11.6
    M-EMS parameters150 A,2 Hz
    300 A,2 Hz
    150 A,4 Hz
    Total length of domain/ m2
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Thomas B G, Zhang L F. Mathematical modeling of fluid flow in continuous casting. ISIJ Int, 2001, 41(10): 1181 doi: 10.2355/isijinternational.41.1181
    [2] Tan J C, Zhang B, Yuan F, et al. Simulation of three-dimensional flow field in slab continuous casting mold. Jiangxi Metall, 2020, 40(6): 11

    譚金池, 張斌, 袁富, 等. 板坯連鑄結晶器三維流場模擬仿真研究. 江西冶金, 2020, 40(6):11
    [3] Li C, Wang B. Large eddy simulation analysis of molten steel flow characteristics in continuous casting mould based on double equation. Shanxi Metall, 2020, 43(3): 1

    李超, 王斌. 基于雙方程的大渦模擬分析連鑄結晶器內鋼液流動特性. 山西冶金, 2020, 43(3):1
    [4] Zhao B, Thomas B G, Vanka S P, et al. Transient fluid flow and superheat transport in continuous casting of steel slabs. Metall Mater Trans B, 2005, 36(6): 801 doi: 10.1007/s11663-005-0083-3
    [5] Liu Z Q, Li B K, Jiang M F, et al. Large eddy simulation of unsteady argon/steel two phase turbulent flow in a continuous casting mold. Acta Metall Sin, 2013, 49(5): 513 doi: 10.3724/SP.J.1037.2012.00760

    劉中秋, 李寶寬, 姜茂發, 等. 連鑄結晶器內氫氣/鋼液兩相非穩態湍流特性的大渦模擬研究. 金屬學報, 2013, 49(5):513 doi: 10.3724/SP.J.1037.2012.00760
    [6] Chen W, Zhang L F. Large eddy simulation of transport and distribution of inclusions in continuous casting slab strand. China Metall, 2018, 28(Suppul 1): 26

    陳威, 張立峰. 板坯連鑄結晶器內夾雜物分布的大渦模擬. 中國冶金, 2018, 28(S1): 26
    [7] Anagnostopoulos J, Bergeles G. Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model. Metall Mater Trans B, 1999, 30(6): 1095 doi: 10.1007/s11663-999-0116-4
    [8] Wang J, Yu H Q, Zhu M Y. Numerical simulation of interfacial behaviour between molten steel and slag in medium-thin slab continuous casting mold. J Mater Metall, 2008, 7(4): 243 doi: 10.3969/j.issn.1671-6620.2008.04.002

    王軍, 于海岐, 朱苗勇. 中薄板坯連鑄結晶器鋼/渣界面行為數值模擬. 材料與冶金學報, 2008, 7(4):243 doi: 10.3969/j.issn.1671-6620.2008.04.002
    [9] Sun X H, Li B, Lu H B, et al. Steel/slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold. Metals, 2019, 9(9): 983 doi: 10.3390/met9090983
    [10] Liu Z Q, Qi F S, Li B K, et al. Unsteady fluctuation behavior of slag-metal interface in a slab continuous casting mold. J Northeast Univ (Nat Sci), 2014, 35(12): 1733 doi: 10.12068/j.issn.1005-3026.2014.12.014

    劉中秋, 齊鳳升, 李寶寬, 等. 板坯連鑄結晶器內渣/金界面非穩態波動行為. 東北大學學報(自然科學版), 2014, 35(12):1733 doi: 10.12068/j.issn.1005-3026.2014.12.014
    [11] Chen W, Ren Y, Zhang L F, et al. Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES?+?VOF?+?DPM model. JOM, 2019, 71(3): 1158 doi: 10.1007/s11837-018-3255-8
    [12] Wang Y F, Zhang L F. Fluid flow-related transport phenomena in steel slab continuous casting strands under electromagnetic brake. Metall Mater Trans B, 2011, 42(6): 1319 doi: 10.1007/s11663-011-9554-x
    [13] Chen W, Zhang L F, Wang Y D, et al. Mathematical simulation of two-phase flow and slag entrainment during steel bloom continuous casting. Powder Technol, 2021, 390: 539 doi: 10.1016/j.powtec.2021.05.101
    [14] Zhang X B, Chen W, Zhang L F. A coupled model on fluid flow, heat transfer and solidification in continuous casting mold. China Foundry, 2017, 14(5): 416 doi: 10.1007/s41230-017-7171-2
    [15] Lu C X, Mao Y M, Zhang X B, et al. Effect of viscosity of mold flux on infiltration in steel continuous casting by numerical simulation. Continuous Cast, 2021, 46(2): 43

    盧春曉, 毛譽敏, 張旭彬, 等. 保護渣黏度對連鑄潤滑影響的模擬仿真. 連鑄, 2021, 46(2):43
    [16] Wang L J, Kong L Z, Feng L H, et al. Interfacial behavior of steel and slag in billet mold during high casting speed. Continuous Cast, 2021, 46(4): 11

    王林杰, 孔令種, 馮亮花, 等. 高拉速方坯連鑄結晶器鋼渣界面行為特征. 連鑄, 2021, 46(4):11
    [17] Ren L, Zhang L F, Wang Q Q, et al. Study on fluid flow in a continuous casting slab mold using particle image velocimetry. Chin J Eng, 2016, 38(10): 1393

    任磊, 張立峰, 王強強, 等. 基于PIV技術的板坯連鑄結晶器內鋼水流動行為研究. 工程科學學報, 2016, 38(10):1393
    [18] Chen W, Ren Y, Zhang L F. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM, 2018, 70(12): 2968 doi: 10.1007/s11837-018-3118-3
    [19] Chaudhary R, Thomas B G, Vanka S P. Effect of electromagnetic ruler braking (EMBr) on transient turbulent flow in continuous slab casting using large eddy simulations. Metall Mater Trans B, 2012, 43(3): 532 doi: 10.1007/s11663-012-9634-6
    [20] Schwarze R. Unsteady RANS simulation of oscillating mould flows. Int J Numer Meth Fluids, 2006, 52(8): 883 doi: 10.1002/fld.1208
    [21] Ni P Y, Ersson M, Jonsson L, et al. Numerical study on the influence of a swirling flow tundish on multiphase flow and heat transfer in mold. Metals, 2018, 8(5): 368 doi: 10.3390/met8050368
    [22] Asad A, Kratzsch C, Schwarze R. Numerical investigation of the free surface in a model mold. Steel Res Int, 2016, 87(2): 181 doi: 10.1002/srin.201400600
    [23] Bielnicki M, Jowsa J. Physical and numerical modeling of liquid slag entrainment in mould during slabs casting. Metall Res Technol, 2020, 117(5): 509 doi: 10.1051/metal/2020055
    [24] Li L M, Liu Z Q, Cao M X, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)–volume of fluid (VOF) coupled model. JOM, 2015, 67(7): 1459 doi: 10.1007/s11837-015-1465-x
    [25] Zhao P, Zhou L H. Mathematical modelling of slag entrainment and entrained droplets in a continuous casting mould. Ironmak Steelmak, 2019, 46(9): 886 doi: 10.1080/03019233.2019.1604613
    [26] Zhao P, Li Q, Kuang S B, et al. Mathematical modeling of liquid slag layer fluctuation and slag droplets entrainment in a continuous casting mold based on VOF-LES method. High Temp Mater Process, 2017, 36(5): 551 doi: 10.1515/htmp-2016-0143
    [27] Liu Z Q, Li B K. Scale-adaptive analysis of Euler-Euler large eddy simulation for laboratory scale dispersed bubbly flows. Chem Eng J, 2018, 338: 465 doi: 10.1016/j.cej.2018.01.051
    [28] Xiao C, Zhang J M, Luo Y Z, et al. Control of macrosegregation behavior by applying final electromagnetic stirring for continuously cast high carbon steel billet. J Iron Steel Res Int, 2013, 20(11): 13 doi: 10.1016/S1006-706X(13)60190-9
    [29] Li J C, Wang B F, Wang X D, et al. Optimization of stirring position and parameters of final electromagnetic stirring process for continuous casting bloom. Special Cast Nonferrous Alloys, 2014, 34(8): 853

    李建超, 王寶峰, 王曉東, 等. 連鑄圓坯凝固末端電磁攪拌位置及工藝參數優化. 特種鑄造及有色合金, 2014, 34(8):853
    [30] Javurek M, Barna M, Gittler P, et al. Flow modelling in continuous casting of round bloom strands with electromagnetic stirring. Steel Res Int, 2008, 79(8): 617 doi: 10.1002/srin.200806174
    [31] Wang Y D, Zhang L F, Chen W, et al. Three-dimensional macrosegregation model of bloom in curved continuous casting process. Metall Mater Trans B, 2021, 52(4): 2796 doi: 10.1007/s11663-021-02231-5
    [32] Liao Y L, Yao Y F. Applications analysis of the technology of mold electromagnetic stirring in a steel mill. Adv Mater Res, 2013, 721: 471 doi: 10.4028/www.scientific.net/AMR.721.471
    [33] Hu Z F, Zhang J M, Cai Z, et al. Effects of M-EMS on surface cleaniness of IF steel slab. J Iron Steel Res, 2011, 23(10): 15

    胡招凡, 張炯明, 蔡珍, 等. 結晶器電磁攪拌對IF鋼連鑄坯表層純凈度的影響. 鋼鐵研究學報, 2011, 23(10):15
    [34] Lei S W, Zhang J M, Dong Q P, et al. Effect of electromagnetic stirring on the distribution of large inclusion in the surface layer. Ind Heat, 2014, 43(4): 23 doi: 10.3969/j.issn.1002-1639.2014.04.007

    雷少武, 張炯明, 董其鵬, 等. 電磁攪拌對板坯表層大型夾雜物分布的影響. 工業加熱, 2014, 43(4):23 doi: 10.3969/j.issn.1002-1639.2014.04.007
    [35] Lan X K, Khodadadi J M. Fluid flow, heat transfer and solidification in the mold of continuous casters during ladle change. Int J Heat Mass Transf, 2001, 44(5): 953 doi: 10.1016/S0017-9310(00)00145-9
    [36] Qiu S T, Liu H P, Peng S H, et al. Numerical analysis of thermal-driven buoyancy flow in the steady macro-solidification process of a continuous slab caster. ISIJ Int, 2004, 44(8): 1376 doi: 10.2355/isijinternational.44.1376
    [37] Tian X Y, Zou F, Li B W, et al. Numerical analysis of coupled fluid flow, heat transfer and macroscopic solidification in the thin slab funnel shape mold with a new type EMBr. Metall Mater Trans B, 2010, 41(1): 112 doi: 10.1007/s11663-009-9314-3
    [38] Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071
    [39] Trindade L B, Vilela A C F, Filho A F F, et al. Numerical model of electromagnetic stirring for continuous casting billets. IEEE Trans Magn, 2002, 38(6): 3658 doi: 10.1109/TMAG.2002.804804
    [40] Liu H P, Xu M G, Qiu S T, et al. Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring. Metall Mater Trans B, 2012, 43(6): 1657 doi: 10.1007/s11663-012-9737-0
    [41] Yu H Q, Zhu M Y. Influence of electromagnetic stirring on transport phenomena in round billet continuous casting mould and macrostructure of high carbon steel billet. Ironmak Steelmak, 2012, 39(8): 574 doi: 10.1179/0301923312Z.00000000058
    [42] Smagorinsky J. General circulation experiments with the primitive equations. Mon Wea Rev, 1963, 91(3): 99 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
    [43] Yuan Q, Vanka S P, Thomas B G, et al. Computational and experimental study of turbulent flow in a 0.4-scale water model of a continuous steel caster. Metall Mater Trans B, 2004, 35(5): 967
    [44] Steinier J, Termonia Y, Deltour J. Smoothing and differentiation of data by simplified least square procedure. Anal Chem, 1972, 44(11): 1906 doi: 10.1021/ac60319a045
    [45] Zhou H C, Zhang L F, Zhou Q Y, et al. Clogging-induced asymmetrical and transient flow pattern in a steel continuous casting slab strand measured using nail boards. Steel Res Int, 2021, 92(4): 2000547 doi: 10.1002/srin.202000547
    [46] Chen W, Zhou H C, Wang S D, et al. Nail board industrial experiment on effect of argon flow rate on mold flow field. Iron Steel, 2019, 54(8): 102

    陳威, 周海忱, 王勝東, 等. 吹氬流量對結晶器流場影響的插釘工業試驗. 鋼鐵, 2019, 54(8):102
    [47] Gong W Q, Huang S J, Xu Z. Characteristics of scale components having maximal dynamic energy and dissipation energy in smooth turbulent boundary layer. Acta Aeronaut Astronaut Sin, 2001, 22(4): 293 doi: 10.3321/j.issn:1000-6893.2001.04.002

    宮武旗, 黃淑娟, 徐忠. 邊界層中湍動能和耗散能最大的尺度分量特征研究. 航空學報, 2001, 22(4):293 doi: 10.3321/j.issn:1000-6893.2001.04.002
    [48] Liu X H, Min J, Pan C M, et al. Investigation of turbulence kinetic energy dissipation rate in a stirred tank using large eddy PIV approach. Chin J Process Eng, 2008, 8(3): 425 doi: 10.3321/j.issn:1009-606X.2008.03.002

    劉心洪, 閔健, 潘春妹, 等. 采用大渦PIV方法研究攪拌槽內湍流動能耗散率. 過程工程學報, 2008, 8(3):425 doi: 10.3321/j.issn:1009-606X.2008.03.002
    [49] Cui L X, Lei X H, Zhang L F, et al. Three-dimensional characterization of defects in continuous casting blooms of heavy rail steel using X-ray computed tomography. Metall Mater Trans B, 2021, 52(4): 2327 doi: 10.1007/s11663-021-02172-z
  • 加載中
圖(17) / 表(1)
計量
  • 文章訪問數:  1417
  • HTML全文瀏覽量:  313
  • PDF下載量:  83
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-01
  • 網絡出版日期:  2022-01-17
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回