Large eddy simulation on the multiphase fluid flow and slag entrainment in a continuous casting mold with electromagnetic stirring
-
摘要: 針對大方坯連鑄結晶器內的流動和卷渣行為進行了三維數值模擬仿真,應用大渦模擬模型模擬湍流、應用VOF模型模擬渣相?鋼液和空氣?渣相?鋼液的多相流。研究對比了鋼液單相流動、渣相?鋼液兩相流動和空氣?渣相?鋼液三相流動3種模型下結晶器內的流動、鋼?渣界面液位形狀和波動及卷渣行為,并通過工業用計算機斷層成像技術(工業CT)檢測了連鑄坯中大顆粒卷渣類夾雜物數量隨著電磁攪拌電流強度的變化。結果表明,在150 A、2 Hz結晶器電磁攪拌下,3種模型得到的結晶器內鋼液流場差別較小,但在鋼?渣界面處差別較大。鋼液單相模型下鋼液表面流動速度比其他兩種模型鋼?渣界面處的速度更大。渣相?鋼液兩相模型和空氣?渣相?鋼液三相模型的卷渣速率分別為0.00118和0.00040 kg?s?1。渣相?鋼液兩相模型條件下,由于上表面即渣的頂面不能彎曲,所以鋼?渣界面處的湍動能沒有得到耗散,所以比三相模型的湍動能更大,因此其預測的卷渣速率偏大。當攪拌電流強度增大到300 A,渣相?鋼液兩相模型和空氣?渣相?鋼液三相模型的卷渣速率分別為150 A條件下的5倍和15倍;當電流頻率增大到4 Hz,渣相?鋼液兩相模型的卷渣速率變化很小,空氣?渣相?鋼液三相模型的卷渣速率降低為2 Hz條件下的1/3。因此,為了正確的模擬和預測結晶器鋼?渣界面處的卷渣行為,必須使用空氣?渣相?鋼液三相瞬態模型進行模擬仿真。Abstract: Due to the closed environment with high temperature and pressure in the continuous casting (CC) process, numerical simulation technology with flexible control and low cost of phenomena in the CC mold has been a research hotspot. The multiphase flow, heat transfer, solidification of steel and slag, and other complex interaction in the mold are some of the simulation difficulties. Various physical models have been established in recent studies to obtain the reactions and effects of the different phases. However, the influence of different models on the simulation results is rarely studied. In the current study, a three-dimensional (3D) mathematical model, coupled with the large eddy simulation (LES) turbulent model and volume of fluid (VOF) multiphase model, was established to investigate the multiphase flow, slag-steel interface level fluctuation, and slag entrainment in the mold of a steel bloom CC with mold electromagnetic stirring (M-EMS). The air?slag?steel three-phase flow, slag?steel two-phase flow, and steel single-phase flow were compared. An industrial computerized tomography (CT) was used to detect the large entrainment slag inclusions in blooms with different stirring current intensities. With a 150-A current intensity and a 2-Hz frequency electromagnetic stirring at the mold, the multiphase flows are approximately identical for the three models, although different at the slag?steel interface. The speed on the top surface of the single-phase model is higher than that of the multiphase models. The level fluctuation of the two-phase model is slightly more severe than that of the three-phase model, and the net slag entrainment rates of the two-phase and three-phase models are 0.00118 and 0.00040 kg·s?1, respectively. The turbulence kinetic energy at the slag?steel interface of the two-phase model is significantly greater than that of the three-phase model because the turbulence kinetic energy can not be dissipated, unlike that in the actual process. Thus, the predicated slag entrainment obtained by the two-phase model is higher. On increasing the stirring current intensity to 300 A, the net slag entrainment rate is 5 times and 15 times higher for the two-phase and three-phase model higher than that under 150 A; when the current frequency increases to 4 Hz, the net slag entrainment rate of the two-phase model varies little, while that of the three-phase model becomes 1/3 of that under 2 Hz. To accurately simulate and predict the slag entrainment phenomena at the CC mold, the air?slag?steel three-phase multiphase model should be mandatory.
-
圖 6 彎月面時均速度分布. (a)鋼液單相模型; (b)渣相?鋼液兩相模型; (c)空氣?渣相?鋼液三相模型; (d) 彎月面在結晶器厚度中心線上的流動的速度大小
Figure 6. Time-average speed distribution of the meniscus: (a) steel?slag single-phase model; (b) steel?slag two-phase model; (c) steel?slag?air three-phase model; (d) time-average velocity magnitude along meniscus width center line
表 1 模型尺寸及物性參數
Table 1. Model dimensions and material parameters
Parameters Value Parameters Value Submergence depth of SEN/ mm 120 Molten steel density/(kg·m?3) 7020 Mold length/ mm 800 Molten steel viscosity/ (kg·m?1·s?1) 0.0055 Air phase thickness/ mm 65 Superheat of molten steel/ K 20 Slag phase thickness/ mm 35 Slag density/(kg·m?3) 2500 Radius of curvature/ m 10.25 Slag viscosity/(kg·m?1·s?1) 0.18 Section size/(mm×mm) 280×250 Liquidus temperature of molten steel/ K 1727 Casting speed/(m·min?1) 0.62 Surface tension of molten steel/(N·m?1) 1.6 M-EMS parameters 150 A,2 Hz
300 A,2 Hz
150 A,4 HzTotal length of domain/ m 2 www.77susu.com -
參考文獻
[1] Thomas B G, Zhang L F. Mathematical modeling of fluid flow in continuous casting. ISIJ Int, 2001, 41(10): 1181 doi: 10.2355/isijinternational.41.1181 [2] Tan J C, Zhang B, Yuan F, et al. Simulation of three-dimensional flow field in slab continuous casting mold. Jiangxi Metall, 2020, 40(6): 11譚金池, 張斌, 袁富, 等. 板坯連鑄結晶器三維流場模擬仿真研究. 江西冶金, 2020, 40(6):11 [3] Li C, Wang B. Large eddy simulation analysis of molten steel flow characteristics in continuous casting mould based on double equation. Shanxi Metall, 2020, 43(3): 1李超, 王斌. 基于雙方程的大渦模擬分析連鑄結晶器內鋼液流動特性. 山西冶金, 2020, 43(3):1 [4] Zhao B, Thomas B G, Vanka S P, et al. Transient fluid flow and superheat transport in continuous casting of steel slabs. Metall Mater Trans B, 2005, 36(6): 801 doi: 10.1007/s11663-005-0083-3 [5] Liu Z Q, Li B K, Jiang M F, et al. Large eddy simulation of unsteady argon/steel two phase turbulent flow in a continuous casting mold. Acta Metall Sin, 2013, 49(5): 513 doi: 10.3724/SP.J.1037.2012.00760劉中秋, 李寶寬, 姜茂發, 等. 連鑄結晶器內氫氣/鋼液兩相非穩態湍流特性的大渦模擬研究. 金屬學報, 2013, 49(5):513 doi: 10.3724/SP.J.1037.2012.00760 [6] Chen W, Zhang L F. Large eddy simulation of transport and distribution of inclusions in continuous casting slab strand. China Metall, 2018, 28(Suppul 1): 26陳威, 張立峰. 板坯連鑄結晶器內夾雜物分布的大渦模擬. 中國冶金, 2018, 28(S1): 26 [7] Anagnostopoulos J, Bergeles G. Three-dimensional modeling of the flow and the interface surface in a continuous casting mold model. Metall Mater Trans B, 1999, 30(6): 1095 doi: 10.1007/s11663-999-0116-4 [8] Wang J, Yu H Q, Zhu M Y. Numerical simulation of interfacial behaviour between molten steel and slag in medium-thin slab continuous casting mold. J Mater Metall, 2008, 7(4): 243 doi: 10.3969/j.issn.1671-6620.2008.04.002王軍, 于海岐, 朱苗勇. 中薄板坯連鑄結晶器鋼/渣界面行為數值模擬. 材料與冶金學報, 2008, 7(4):243 doi: 10.3969/j.issn.1671-6620.2008.04.002 [9] Sun X H, Li B, Lu H B, et al. Steel/slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold. Metals, 2019, 9(9): 983 doi: 10.3390/met9090983 [10] Liu Z Q, Qi F S, Li B K, et al. Unsteady fluctuation behavior of slag-metal interface in a slab continuous casting mold. J Northeast Univ (Nat Sci) , 2014, 35(12): 1733 doi: 10.12068/j.issn.1005-3026.2014.12.014劉中秋, 齊鳳升, 李寶寬, 等. 板坯連鑄結晶器內渣/金界面非穩態波動行為. 東北大學學報(自然科學版), 2014, 35(12):1733 doi: 10.12068/j.issn.1005-3026.2014.12.014 [11] Chen W, Ren Y, Zhang L F, et al. Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES?+?VOF?+?DPM model. JOM, 2019, 71(3): 1158 doi: 10.1007/s11837-018-3255-8 [12] Wang Y F, Zhang L F. Fluid flow-related transport phenomena in steel slab continuous casting strands under electromagnetic brake. Metall Mater Trans B, 2011, 42(6): 1319 doi: 10.1007/s11663-011-9554-x [13] Chen W, Zhang L F, Wang Y D, et al. Mathematical simulation of two-phase flow and slag entrainment during steel bloom continuous casting. Powder Technol, 2021, 390: 539 doi: 10.1016/j.powtec.2021.05.101 [14] Zhang X B, Chen W, Zhang L F. A coupled model on fluid flow, heat transfer and solidification in continuous casting mold. China Foundry, 2017, 14(5): 416 doi: 10.1007/s41230-017-7171-2 [15] Lu C X, Mao Y M, Zhang X B, et al. Effect of viscosity of mold flux on infiltration in steel continuous casting by numerical simulation. Continuous Cast, 2021, 46(2): 43盧春曉, 毛譽敏, 張旭彬, 等. 保護渣黏度對連鑄潤滑影響的模擬仿真. 連鑄, 2021, 46(2):43 [16] Wang L J, Kong L Z, Feng L H, et al. Interfacial behavior of steel and slag in billet mold during high casting speed. Continuous Cast, 2021, 46(4): 11王林杰, 孔令種, 馮亮花, 等. 高拉速方坯連鑄結晶器鋼渣界面行為特征. 連鑄, 2021, 46(4):11 [17] Ren L, Zhang L F, Wang Q Q, et al. Study on fluid flow in a continuous casting slab mold using particle image velocimetry. Chin J Eng, 2016, 38(10): 1393任磊, 張立峰, 王強強, 等. 基于PIV技術的板坯連鑄結晶器內鋼水流動行為研究. 工程科學學報, 2016, 38(10):1393 [18] Chen W, Ren Y, Zhang L F. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM, 2018, 70(12): 2968 doi: 10.1007/s11837-018-3118-3 [19] Chaudhary R, Thomas B G, Vanka S P. Effect of electromagnetic ruler braking (EMBr) on transient turbulent flow in continuous slab casting using large eddy simulations. Metall Mater Trans B, 2012, 43(3): 532 doi: 10.1007/s11663-012-9634-6 [20] Schwarze R. Unsteady RANS simulation of oscillating mould flows. Int J Numer Meth Fluids, 2006, 52(8): 883 doi: 10.1002/fld.1208 [21] Ni P Y, Ersson M, Jonsson L, et al. Numerical study on the influence of a swirling flow tundish on multiphase flow and heat transfer in mold. Metals, 2018, 8(5): 368 doi: 10.3390/met8050368 [22] Asad A, Kratzsch C, Schwarze R. Numerical investigation of the free surface in a model mold. Steel Res Int, 2016, 87(2): 181 doi: 10.1002/srin.201400600 [23] Bielnicki M, Jowsa J. Physical and numerical modeling of liquid slag entrainment in mould during slabs casting. Metall Res Technol, 2020, 117(5): 509 doi: 10.1051/metal/2020055 [24] Li L M, Liu Z Q, Cao M X, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)–volume of fluid (VOF) coupled model. JOM, 2015, 67(7): 1459 doi: 10.1007/s11837-015-1465-x [25] Zhao P, Zhou L H. Mathematical modelling of slag entrainment and entrained droplets in a continuous casting mould. Ironmak Steelmak, 2019, 46(9): 886 doi: 10.1080/03019233.2019.1604613 [26] Zhao P, Li Q, Kuang S B, et al. Mathematical modeling of liquid slag layer fluctuation and slag droplets entrainment in a continuous casting mold based on VOF-LES method. High Temp Mater Process, 2017, 36(5): 551 doi: 10.1515/htmp-2016-0143 [27] Liu Z Q, Li B K. Scale-adaptive analysis of Euler-Euler large eddy simulation for laboratory scale dispersed bubbly flows. Chem Eng J, 2018, 338: 465 doi: 10.1016/j.cej.2018.01.051 [28] Xiao C, Zhang J M, Luo Y Z, et al. Control of macrosegregation behavior by applying final electromagnetic stirring for continuously cast high carbon steel billet. J Iron Steel Res Int, 2013, 20(11): 13 doi: 10.1016/S1006-706X(13)60190-9 [29] Li J C, Wang B F, Wang X D, et al. Optimization of stirring position and parameters of final electromagnetic stirring process for continuous casting bloom. Special Cast Nonferrous Alloys, 2014, 34(8): 853李建超, 王寶峰, 王曉東, 等. 連鑄圓坯凝固末端電磁攪拌位置及工藝參數優化. 特種鑄造及有色合金, 2014, 34(8):853 [30] Javurek M, Barna M, Gittler P, et al. Flow modelling in continuous casting of round bloom strands with electromagnetic stirring. Steel Res Int, 2008, 79(8): 617 doi: 10.1002/srin.200806174 [31] Wang Y D, Zhang L F, Chen W, et al. Three-dimensional macrosegregation model of bloom in curved continuous casting process. Metall Mater Trans B, 2021, 52(4): 2796 doi: 10.1007/s11663-021-02231-5 [32] Liao Y L, Yao Y F. Applications analysis of the technology of mold electromagnetic stirring in a steel mill. Adv Mater Res, 2013, 721: 471 doi: 10.4028/www.scientific.net/AMR.721.471 [33] Hu Z F, Zhang J M, Cai Z, et al. Effects of M-EMS on surface cleaniness of IF steel slab. J Iron Steel Res, 2011, 23(10): 15胡招凡, 張炯明, 蔡珍, 等. 結晶器電磁攪拌對IF鋼連鑄坯表層純凈度的影響. 鋼鐵研究學報, 2011, 23(10):15 [34] Lei S W, Zhang J M, Dong Q P, et al. Effect of electromagnetic stirring on the distribution of large inclusion in the surface layer. Ind Heat, 2014, 43(4): 23 doi: 10.3969/j.issn.1002-1639.2014.04.007雷少武, 張炯明, 董其鵬, 等. 電磁攪拌對板坯表層大型夾雜物分布的影響. 工業加熱, 2014, 43(4):23 doi: 10.3969/j.issn.1002-1639.2014.04.007 [35] Lan X K, Khodadadi J M. Fluid flow, heat transfer and solidification in the mold of continuous casters during ladle change. Int J Heat Mass Transf, 2001, 44(5): 953 doi: 10.1016/S0017-9310(00)00145-9 [36] Qiu S T, Liu H P, Peng S H, et al. Numerical analysis of thermal-driven buoyancy flow in the steady macro-solidification process of a continuous slab caster. ISIJ Int, 2004, 44(8): 1376 doi: 10.2355/isijinternational.44.1376 [37] Tian X Y, Zou F, Li B W, et al. Numerical analysis of coupled fluid flow, heat transfer and macroscopic solidification in the thin slab funnel shape mold with a new type EMBr. Metall Mater Trans B, 2010, 41(1): 112 doi: 10.1007/s11663-009-9314-3 [38] Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071 [39] Trindade L B, Vilela A C F, Filho A F F, et al. Numerical model of electromagnetic stirring for continuous casting billets. IEEE Trans Magn, 2002, 38(6): 3658 doi: 10.1109/TMAG.2002.804804 [40] Liu H P, Xu M G, Qiu S T, et al. Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring. Metall Mater Trans B, 2012, 43(6): 1657 doi: 10.1007/s11663-012-9737-0 [41] Yu H Q, Zhu M Y. Influence of electromagnetic stirring on transport phenomena in round billet continuous casting mould and macrostructure of high carbon steel billet. Ironmak Steelmak, 2012, 39(8): 574 doi: 10.1179/0301923312Z.00000000058 [42] Smagorinsky J. General circulation experiments with the primitive equations. Mon Wea Rev, 1963, 91(3): 99 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 [43] Yuan Q, Vanka S P, Thomas B G, et al. Computational and experimental study of turbulent flow in a 0.4-scale water model of a continuous steel caster. Metall Mater Trans B, 2004, 35(5): 967 [44] Steinier J, Termonia Y, Deltour J. Smoothing and differentiation of data by simplified least square procedure. Anal Chem, 1972, 44(11): 1906 doi: 10.1021/ac60319a045 [45] Zhou H C, Zhang L F, Zhou Q Y, et al. Clogging-induced asymmetrical and transient flow pattern in a steel continuous casting slab strand measured using nail boards. Steel Res Int, 2021, 92(4): 2000547 doi: 10.1002/srin.202000547 [46] Chen W, Zhou H C, Wang S D, et al. Nail board industrial experiment on effect of argon flow rate on mold flow field. Iron Steel, 2019, 54(8): 102陳威, 周海忱, 王勝東, 等. 吹氬流量對結晶器流場影響的插釘工業試驗. 鋼鐵, 2019, 54(8):102 [47] Gong W Q, Huang S J, Xu Z. Characteristics of scale components having maximal dynamic energy and dissipation energy in smooth turbulent boundary layer. Acta Aeronaut Astronaut Sin, 2001, 22(4): 293 doi: 10.3321/j.issn:1000-6893.2001.04.002宮武旗, 黃淑娟, 徐忠. 邊界層中湍動能和耗散能最大的尺度分量特征研究. 航空學報, 2001, 22(4):293 doi: 10.3321/j.issn:1000-6893.2001.04.002 [48] Liu X H, Min J, Pan C M, et al. Investigation of turbulence kinetic energy dissipation rate in a stirred tank using large eddy PIV approach. Chin J Process Eng, 2008, 8(3): 425 doi: 10.3321/j.issn:1009-606X.2008.03.002劉心洪, 閔健, 潘春妹, 等. 采用大渦PIV方法研究攪拌槽內湍流動能耗散率. 過程工程學報, 2008, 8(3):425 doi: 10.3321/j.issn:1009-606X.2008.03.002 [49] Cui L X, Lei X H, Zhang L F, et al. Three-dimensional characterization of defects in continuous casting blooms of heavy rail steel using X-ray computed tomography. Metall Mater Trans B, 2021, 52(4): 2327 doi: 10.1007/s11663-021-02172-z -