Hybrid evolutionary JAYA algorithm for global and engineering optimization problems
-
摘要: 為了更好求解復雜函數優化和工程約束優化問題,進一步增強JAYA算法的尋優能力,提出一種面向全局優化的混合進化JAYA算法。首先在計算當前最優和最差個體時引入反向學習機制,提高最優和最差個體跳離局部極值區域的可能性;然后在個體位置更新中引入并融合正弦余弦算子和差分擾動機制,不僅增加了種群的多樣性,而且較好平衡與滿足了算法在不同迭代時期對探索和挖掘能力的不同需求;最后在算法結構上采用奇偶不同的混合進化策略,有效利用不同演化機制的優勢結果,進一步提升了算法的收斂性和精度。之后給出了算法流程偽代碼,理論分析證明了改進算法的時間復雜度與基本JAYA相同,而通過6種代表性算法在包含和組合了30個基準函數的CEC2017測試套件上進行的多維度函數極值優化測試,以及對拉伸彈簧、波紋艙壁、管柱設計、鋼筋混凝土梁、焊接梁和汽車側面碰撞6個具有挑戰性的工程設計問題的優化求解,都清楚地表明改進后算法的尋優精度、收斂性能和求解穩定性均有顯著提升,在求解CEC復雜函數和工程約束優化問題上有著明顯優勢。Abstract: A swarm intelligence optimization algorithm is an effective method to rapidly solve large-scale complex optimization problems. The JAYA algorithm is a new swarm intelligence evolutionary optimization algorithm, which was proposed in 2016. Compared with other active evolutionary algorithms, the JAYA algorithm has several advantages, such as a clear mechanism, concise structure, and ease of implementation. Further, it has guiding characteristics, obtains the best solution, and avoids the worst solution. The JAYA algorithm has an excellent optimization effect on many problems, and it is one of the most influential algorithms in the field of swarm intelligence. However, when dealing with the CEC test suite, which contains and combines shifted, rotation, hybrid, combination, and other composite characteristics, and the complex engineering constrained optimization problems with considerable difficulty and challenges, the JAYA algorithm has some flaws, that is, it easily falls into the local extremum, its optimization accuracy is sometimes low, and its solution is unstable. To better solve complex function optimization and engineering constrained optimization problems and further enhance the optimization capability of the JAYA algorithm, a global optimization-oriented hybrid evolutionary JAYA algorithm is proposed. First, opposition-based learning is introduced to calculate the current best and worst individuals, which improves the possibility of the best and worst individuals jumping out of the local extremum region. Second, the sine–cosine operator and differential disturbance mechanism are introduced and integrated into individual position updating, which not only improves the diversity of the population but also better balances and meets the different requirements of the algorithm for exploration and mining in different iteration periods. Finally, in the algorithm structure, the hybrid evolution strategy with different parity states is adopted and the advantages of different evolution mechanisms are effectively used, which further improves the convergence and accuracy of the algorithm. Then, the pseudocode of the improved algorithm is given, and the theoretical analysis proves that the time complexity of the improved algorithm is consistent with the basic JAYA algorithm. Through the simulation experiment of function extremum optimization of six representative algorithms on multiple dimensions of the CEC2017 test suite, which contains and combines 30 benchmark functions and the optimal solution of six challenging engineering design problems, such as tension/compression spring, corrugated bulkhead, tubular column, reinforced concrete beam, welded beam, and car side impact. The optimal solution of the test results shows that the improved algorithm has significantly improved the optimization accuracy, convergence performance, and solution stability, and it has obvious advantages in solving CEC complex functions and engineering constrained optimization problems.
-
表 1 6種算法在固定迭代次數下的尋優結果比較
Table 1. Comparison of the optimization results of six representative algorithms under fixed iteration times
Functions Algorithms D=10 D=50 D=100 Best Mean Variance Best Mean Variance Best Mean Variance f11(x) H-JAYA 1.10×103 1.11×103 1.40×101 1.37×103 1.74×103 1.65×105 1.50×104 3.94×104 2.47×108 IJAYA 1.11×103 1.12×103 2.62×101 3.87×103 7.80×103 2.20×106 1.68×105 2.55×105 1.32×109 CLJAYA 1.11×103 1.18×103 4.57×103 5.95×103 1.27×104 1.37×107 9.30×104 1.32×105 3.71×108 HFPSO 1.11×103 1.16×103 2.65×103 5.19×103 1.43×104 3.54×107 1.12×105 2.37×105 5.10×109 JAYA 1.14×103 1.19×103 1.19×103 5.59×103 9.84×103 6.79×106 1.66×105 2.68×105 2.61×109 WOA 1.12×103 1.22×103 1.04×104 2.93×103 5.25×103 1.65×106 1.26×105 2.31×105 6.78×109 f12(x) H-JAYA 2.80×103 1.01×104 3.15×107 6.03×106 4.80×107 5.94×1015 4.18×108 1.46×109 1.74×1018 IJAYA 8.60×104 4.01×105 1.35×1011 1.18×109 1.85×109 1.55×1017 9.17×109 1.20×1010 2.80×1018 CLJAYA 3.44×103 4.28×105 1.67×1012 7.36×109 2.36×1010 6.40×1019 8.88×1010 1.35×1011 3.73×1020 HFPSO 3.02×103 1.60×104 1.33×108 1.01×107 8.26×107 6.55×1015 7.82×109 1.24×1010 1.99×1019 JAYA 6.17×105 8.03×106 4.38×1013 5.39×109 7.86×109 1.77×1018 2.86×1010 4.13×1010 5.16×1019 WOA 1.11×104 4.99×106 2.17×1013 4.90×108 1.52×109 4.04×1017 6.85×109 1.30×1010 9.73×1018 f19(x) H-JAYA 1.90×103 1.91×103 5.47×101 2.84×103 3.03×104 3.91×109 7.24×104 9.21×105 1.60×1012 IJAYA 1.95×103 2.89×103 9.08×105 1.00×106 7.99×106 2.24×1013 1.78×108 4.39×108 1.88×1016 CLJAYA 1.91×103 1.95×103 1.61×103 1.16×106 2.96×107 1.00×1015 1.97×109 7.38×109 9.59×1018 HFPSO 1.94×103 1.10×104 8.86×107 3.75×105 3.69×106 1.30×1013 3.11×107 1.72×108 3.85×1016 JAYA 1.94×103 3.13×103 8.75×106 4.27×106 1.36×108 6.37×1015 1.32×109 2.58×109 3.29×1017 WOA 2.37×103 7.89×104 4.84×1010 3.42×105 1.07×107 8.86×1013 2.99×107 1.25×108 4.01×1015 f20(x) H-JAYA 2.00×103 2.02×103 1.49×102 3.03×103 3.37×103 2.51×104 5.01×103 5.78×103 6.10×104 IJAYA 2.04×103 2.07×103 2.05×102 3.74×103 4.11×103 3.54×104 7.21×103 7.76×103 7.01×104 CLJAYA 2.02×103 2.07×103 2.09×103 3.06×103 3.55×103 8.07×104 5.66×103 6.82×103 3.74×105 HFPSO 2.03×103 2.14×103 4.44×103 2.86×103 3.69×103 1.84×105 5.65×103 7.25×103 3.76×105 JAYA 2.05×103 2.09×103 9.96×102 3.83×103 4.28×103 2.81×104 7.30×103 7.94×103 8.05×104 WOA 2.07×103 2.19×103 6.29×103 3.19×103 3.91×103 1.40×105 5.37×103 7.12×103 3.94×105 f21(x) H-JAYA 2.20×103 2.33×103 2.87×101 2.50×103 2.55×103 1.04×103 3.30×103 3.47×103 5.39×103 IJAYA 2.21×103 2.33×103 6.44×102 2.67×103 2.79×103 1.69×103 3.45×103 3.61×103 5.55×103 CLJAYA 2.20×103 2.33×103 4.23×102 2.74×103 2.96×103 6.65×103 3.85×103 4.16×103 2.72×104 HFPSO 2.21×103 2.33×103 3.11×103 2.71×103 2.82×103 3.30×103 3.48×103 3.65×103 1.09×104 JAYA 2.33×103 2.34×103 3.50×101 2.78×103 2.86×103 1.17×103 3.61×103 3.79×103 8.65×103 WOA 2.21×103 2.33×103 2.79×103 2.81×103 3.05×103 1.16×104 3.91×103 4.36×103 5.14×104 f22(x) H-JAYA 2.30×103 2.31×103 1.69×101 2.58×103 1.09×104 3.02×106 2.09×104 2.50×104 5.31×106 IJAYA 2.30×103 2.31×103 1.79×100 1.41×104 1.63×104 2.41×105 3.27×104 3.44×104 4.14×105 CLJAYA 2.22×103 2.29×103 1.40×103 1.27×104 1.48×104 7.48×105 2.87×104 3.27×104 2.48×106 HFPSO 2.31×103 2.39×103 1.02×105 1.24×104 1.50×104 1.82×106 2.83×104 3.24×104 3.61×106 JAYA 2.23×103 2.32×103 5.18×102 1.54×104 1.66×104 2.06×105 3.32×104 3.48×104 3.48×105 WOA 2.24×103 2.51×103 2.09×105 1.10×104 1.43×104 2.11×106 2.65×104 3.09×104 3.67×106 f25(x) H-JAYA 2.60×103 2.89×103 1.23×104 3.09×103 3.22×103 5.72×103 4.33×103 5.20×103 3.38×105 IJAYA 2.90×103 2.90×103 8.93×101 3.34×103 3.59×103 1.92×104 7.41×103 9.95×103 1.60×106 CLJAYA 2.90×103 2.95×103 2.57×102 6.91×103 9.93×103 2.01×106 1.68×104 2.16×104 4.38×106 HFPSO 2.90×103 2.93×103 8.41×102 3.59×103 4.20×103 1.93×105 4.97×103 5.79×103 4.79×105 JAYA 2.93×103 2.96×103 1.27×102 3.93×103 4.58×103 1.61×105 1.05×104 1.48×104 3.79×106 WOA 2.90×103 2.95×103 8.12×102 3.75×103 4.22×103 1.04×105 6.55×103 8.12×103 6.34×105 f26(x) H-JAYA 2.79×103 2.99×103 8.70×102 7.08×103 9.01×103 3.21×105 2.23×104 2.54×104 2.05×106 IJAYA 2.90×103 3.11×103 1.76×105 8.98×103 1.10×104 9.90×105 2.58×104 3.01×104 5.24×106 CLJAYA 2.91×103 3.05×103 2.59×104 1.04×104 1.32×104 1.82×106 2.97×104 4.02×104 1.82×107 HFPSO 2.81×103 3.01×103 1.15×105 5.62×103 9.75×103 5.34×106 7.77×103 1.82×104 1.41×107 JAYA 3.00×103 3.52×103 3.11×105 1.01×104 1.14×104 3.74×105 2.58×104 2.97×104 4.55×106 WOA 2.83×103 3.61×103 3.86×105 1.03×104 1.41×104 1.63×106 2.82×104 3.62×104 9.11×106 f29(x) H-JAYA 3.14×103 3.17×103 6.75×102 5.10×103 5.89×103 1.33×105 8.34×103 9.85×103 6.71×105 IJAYA 3.15×103 3.20×103 8.47×102 5.31×103 6.26×103 1.39×105 1.18×104 1.37×104 9.48×105 CLJAYA 3.15×103 3.19×103 1.44×103 5.28×103 8.55×103 2.60×106 1.89×104 3.32×104 1.12×108 HFPSO 3.17×103 3.27×103 4.25×103 4.88×103 6.25×103 4.44×105 9.86×103 1.15×104 1.20×106 JAYA 3.16×103 3.22×103 1.79×103 6.14×103 6.91×103 2.38×105 1.44×104 1.83×104 5.09×106 WOA 3.19×103 3.39×103 1.59×104 5.54×103 8.56×103 3.26×106 1.39×104 1.85×104 1.34×107 f30(x) H-JAYA 4.40×103 1.06×104 3.57×108 7.80×105 9.97×106 1.83×1015 3.44×106 1.82×107 4.14×1014 IJAYA 7.46×103 6.66×105 1.22×1012 5.80×107 1.38×108 2.57×1015 3.95×108 6.93×108 2.14×1016 CLJAYA 4.48×103 1.98×106 2.45×1012 5.31×107 3.07×108 2.70×1016 3.09×109 1.32×110 3.27×1019 HFPSO 9.86×103 7.09×105 6.11×1011 6.77×107 1.49×108 2.60×1015 2.62×108 9.42×108 3.74×1017 JAYA 9.69×103 3.75×105 1.18×1011 6.08×107 1.95×108 1.71×1016 2.18×109 4.27×109 5.93×1017 WOA 8.17×103 1.11×106 1.65×1012 9.36×107 2.54×108 1.27×1016 6.34×108 1.35×109 3.02×1017 表 2 各算法求解CEC2017測試集套件Wilcoxon 秩和檢驗的p值
Table 2. p-value for Wilcoxon’s rank-sum test on each algorithm used to solve the CEC2017 test suite
Functions H-JAYA vs JAYA H-JAYA vs IJAYA H-JAYA vs CLJAYA H-JAYA vs WOA H-JAYA vs HFPSO p-value win p-value win p-value win p-value win p-value win f11(x) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) f12(x) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) f19(x) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) f20(x) 2.6734×10–4(+) 2.6727×10–4(+) 2.6727×10–4(+) 2.6727×10–4(+) 2.6727×10–4(+) f21(x) 2.6693×10–4(+) 2.6700×10–4(+) 2.6727×10–4(+) 2.6720×10–4(+) 2.6720×10–4(+) f22(x) 2.6720×10–4(+) 2.6727×10–4(+) 2.6734×10–4(+) 2.6734×10–4(+) 2.6734×10–4(+) f25(x) 2.6734×10–4(+) 2.6734×10–4(+) 2.6734×10–4(+) 2.6727×10–4(+) 2.6727×10–4(+) f26(x) 2.6734×10–4(+) 2.6734×10–4(+) 2.6727×10–4(+) 2.6734×10–4(+) 2.6734×10–4(+) f29(x) 2.6734×10–4(+) 2.6720×10–4(+) 2.6734×10–4(+) 2.6734×10–4(+) 2.6734×10–4(+) f30(x) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) (+/–/=) 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 表 3 6種算法求解拉伸彈簧設計問題的尋優結果比較
Table 3. Comparison of the optimization results of six representative algorithms used to solve the tension/compression spring design problem
Algorithms Best Mean Variance H-JAYA 1.2665237000×10–2 1.2806874020×10–2 2.7477865853×10–8 IJAYA 1.2666032600×10–2 1.3032429118×10–2 2.1994218985×10–6 CLJAYA 1.2666232800×10–2 1.3068941340×10–2 1.2273508194×10–6 JAYA 1.2666917100×10–2 1.3185287610×10–2 1.9559284633×10–6 HFPSO 1.2665806000×10–2 1.2982082240×10–2 3.0289473131×10–7 WOA 1.2671936200×10–2 1.3894943310×10–2 2.4615922288×10–6 表 4 6種算法求解波紋艙壁設計問題的尋優結果比較
Table 4. Comparison of the optimization results of six representative algorithms used to solve the corrugated bulkhead design problem
Algorithms Best Mean Variance H-JAYA 6.8429580101 6.8574579730 3.5011426525×10–4 IJAYA 6.8429580101 7.5431661442 1.0303170764 CLJAYA 6.8429580101 8.2229580101 1.4648979592 JAYA 6.9429580101 8.6689580101 7.9828979592×10–1 HFPSO 6.8924274599 7.0360704247 2.4342757860×10–1 WOA 6.8589881925 7.1845962530 2.1316652625×10–1 表 5 6種算法求解管柱設計問題的尋優結果比較
Table 5. Comparison of the optimization results of six representative algorithms used to solve the tubular column design problem
Algorithms Best Mean Variance H-JAYA 2.6486361472×101 2.6486976485×101 2.7492263055×10–6 IJAYA 2.6486361473×101 2.6770361473×101 3.8922448975×10–2 CLJAYA 2.6486361472×101 2.6840361472×101 2.8248979592×10–2 JAYA 2.6686361472×101 2.6910363872×101 1.3289800884×10–2 HFPSO 2.6491554294×101 2.6524256607×101 4.0282119604×10–4 WOA 2.6491740158×101 2.6831750349×101 1.0260601687×10–1 表 6 6種算法求解鋼筋混凝土梁問題的尋優結果比較
Table 6. Comparison of the optimization results of six representative algorithms used to solve the reinforced concrete beam design problem
Algorithms Best Mean Variance H-JAYA 3.5920800000×102 3.6080773841×102 2.8418472149×102 IJAYA 3.6225000000×102 3.7488260888×102 1.5910386068×102 CLJAYA 3.6225000000×102 3.7447556000×102 1.3625233588×102 JAYA 3.6225000000×102 3.9080088880×102 2.4313100946×102 HFPSO 3.6925001569×102 3.8520700009×102 7.3955644549×101 WOA 3.6225106247×102 3.6700943742×102 4.3808572351×101 表 7 6種算法求解焊接梁設計問題的尋優結果比較
Table 7. Comparison of the optimization results of six representative algorithms used to solve the welded beam design problem
Algorithms Best Mean Variance H-JAYA 1.6702177263 1.6808983776 1.2670965769×10–3 IJAYA 1.6702258303 1.6902400352 2.0000233481×10–2 CLJAYA 1.6702177264 1.6902198653 1.9999912854×10–2 JAYA 1.6702177328 1.8165708743 1.2530675483×10–1 HFPSO 1.6702682457 2.0454210525 8.4760880179×10–2 WOA 1.7177501400 2.3609633625 5.8101787131×10–1 表 8 6種算法求解汽車側面碰撞問題的尋優結果比較
Table 8. Comparison of the optimization results of six representative algorithms used to solve the car side impact design problem
Algorithms Best Mean Variance H-JAYA 2.2848738268×101 2.3445600597×101 1.0419208431×10–1 IJAYA 2.2857969385×101 2.3815013650×101 2.7491744948×10–1 CLJAYA 2.3008501929×101 2.3956603034×101 6.5386322803×10–1 JAYA 2.3094202105×101 2.3872171530×101 7.0916777331×10–1 HFPSO 2.3207806520×101 2.3570163892×101 7.7055620394×10–1 WOA 2.3612634156×101 2.5726584934×101 2.0363936631 www.77susu.com -
參考文獻
[1] Kennedy J, Eberhart R. Particle swarm optimization // Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, 1995: 1942 [2] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput, 2004, 8(3): 256 doi: 10.1109/TEVC.2004.826067 [3] Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems. Knowl Based Syst, 2016, 96: 120 doi: 10.1016/j.knosys.2015.12.022 [4] Liu X J, Wang L G. A sine cosine algorithm based on differential evolution. Chin J Eng, 2020, 42(12): 1674劉小娟, 王聯國. 一種基于差分進化的正弦余弦算法. 工程科學學報, 2020, 42(12):1674 [5] Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw, 2016, 95: 51 doi: 10.1016/j.advengsoft.2016.01.008 [6] Azizi M. Atomic orbital search: A novel metaheuristic algorithm. Appl Math Model, 2021, 93: 657 doi: 10.1016/j.apm.2020.12.021 [7] Kar D, Ghosh M, Guha R, et al. Fuzzy mutation embedded hybrids of gravitational search and Particle Swarm Optimization methods for engineering design problems. Eng Appl Artif Intell, 2020, 95: 103847 doi: 10.1016/j.engappai.2020.103847 [8] Liu S Y, Jin A Z. A co-evolutionary teaching-learning-based optimization algorithm for constrained optimization problems. Acta Autom Sin, 2018, 44(9): 1690劉三陽, 靳安釗. 求解約束優化問題的協同進化教與學優化算法. 自動化學報, 2018, 44(9):1690 [9] Banaie-Dezfouli M, Nadimi-Shahraki M H, Beheshti Z. R-GWO: Representative-based grey wolf optimizer for solving engineering problems. Appl Soft Comput, 2021, 106: 107328 doi: 10.1016/j.asoc.2021.107328 [10] Xiao Z Y, Liu S. Study on elite opposition-based golden-sine whale optimization algorithm and its application of project optimization. Acta Electron Sin, 2019, 47(10): 2177 doi: 10.3969/j.issn.0372-2112.2019.10.020肖子雅, 劉升. 精英反向黃金正弦鯨魚算法及其工程優化研究. 電子學報, 2019, 47(10):2177 doi: 10.3969/j.issn.0372-2112.2019.10.020 [11] Nadimi-Shahraki M H, Taghian S, Mirjalili S. An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl, 2021, 166: 113917 doi: 10.1016/j.eswa.2020.113917 [12] Wang Y H, Gao L. Improvement of crow search algorithm and its application in engineering constrained optimization problems. Comput Integr Manuf Syst, 2021, 27(7): 1871汪逸暉, 高亮. 烏鴉搜索算法的改進及其在工程約束優化問題中的應用. 計算機集成制造系統, 2021, 27(7):1871 [13] Rao R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Industrial Eng Comput, 2016, 7(1): 19 [14] Yu K J, Liang J J, Qu B Y, et al. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers Manag, 2017, 150: 742 doi: 10.1016/j.enconman.2017.08.063 [15] Kang F, Li J J, Dai J H. Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms. Adv Eng Softw, 2019, 131: 60 doi: 10.1016/j.advengsoft.2019.03.003 [16] Ingle K K, Jatoth D R K. An efficient JAYA algorithm with lévy flight for non-linear channel equalization. Expert Syst Appl, 2020, 145: 112970 doi: 10.1016/j.eswa.2019.112970 [17] Iacca G, Junior V C S, Melo V V. An improved Jaya optimization algorithm with Lévy flight. Expert Syst Appl, 2021, 165: 113902 doi: 10.1016/j.eswa.2020.113902 [18] Zhao F Q, Ma R, Wang L. A self-learning discrete jaya algorithm for multiobjective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system. IEEE Trans Cybern, 6181, PP(99): 1 [19] Kang F, Wu Y R, Li J J, et al. Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model. Adv Eng Inform, 2021, 49: 101348 doi: 10.1016/j.aei.2021.101348 [20] Zhang Y Y, Chi A N, Mirjalili S. Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems. Knowl Based Syst, 2021, 233: 107555 doi: 10.1016/j.knosys.2021.107555 [21] Nayak D R, Zhang Y D, Das D S, et al. MJaya-ELM: A Jaya algorithm with mutation and extreme learning machine based approach for sensorineural hearing loss detection. Appl Soft Comput, 2019, 83: 105626 doi: 10.1016/j.asoc.2019.105626 [22] Zhang Y Y, Ma M D, Jin Z G. Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models. Energy, 2020, 211: 118644 doi: 10.1016/j.energy.2020.118644 [23] Zhang Y Y, Jin Z G. Comprehensive learning Jaya algorithm for engineering design optimization problems. J Intell Manuf, 2021: 1 [24] Liu J S, Ma Y X, Li Y. Improved butterfly algorithm for multi-dimensional complex function optimization problem. Acta Electron Sin, 2021, 49(6): 1068 doi: 10.12263/DZXB.20200148劉景森, 馬義想, 李煜. 改進蝴蝶算法求解多維復雜函數優化問題. 電子學報, 2021, 49(6):1068 doi: 10.12263/DZXB.20200148 [25] Liu J S, Mao Y N, Liu X Z, et al. A dynamic adaptive firefly algorithm with globally orientation. Math Comput Simul, 2020, 174: 76 doi: 10.1016/j.matcom.2020.02.020 [26] Wu G, Mallipeddi R, Suganthan P N. Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization [EB/OL]. Technical Repore Online (2017-09) [2021-10-27]. https://www.researchgate.net/profile/Guohua-Wu-5/publication/317228117_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2017_Competition_and_Special_Session_on_Constrained_Single_Objective_Real-Parameter_Optimization/links/5982cdbaa6fdcc8b56f59104/Problem-Definitions-and-Evaluation-Criteria-for-the-CEC-2017-Competition-and-Special-Session-on-Constrained-Single-Objective-Real-Parameter-Optimization.pdf [27] Aydilek ? B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput, 2018, 66: 232 doi: 10.1016/j.asoc.2018.02.025 [28] Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput, 2011, 1(1): 3 doi: 10.1016/j.swevo.2011.02.002 [29] Kumar A, Wu G H, Ali M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput, 2020, 56: 100693 doi: 10.1016/j.swevo.2020.100693 [30] Li Y, Zhao Y R, Liu J S. Dimension by dimension dynamic sine cosine algorithm for global optimization problems. Appl Soft Comput, 2021, 98: 106933 doi: 10.1016/j.asoc.2020.106933 [31] Salgotra R, Singh U, Singh S, et al. Self-adaptive salp swarm algorithm for engineering optimization problems. Appl Math Model, 2021, 89: 188 doi: 10.1016/j.apm.2020.08.014 [32] Liu J S, Ma Y X, Li Y. Improved whale algorithm for solving engineering design optimization problems. Comput Integr Manuf Syst, 2021, 27(7): 1884劉景森, 馬義想, 李煜. 改進鯨魚算法求解工程設計優化問題. 計算機集成制造系統, 2021, 27(7):1884 -