<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

面向全局和工程優化問題的混合進化JAYA算法

劉景森 楊杰 李煜

劉景森, 楊杰, 李煜. 面向全局和工程優化問題的混合進化JAYA算法[J]. 工程科學學報, 2023, 45(3): 431-445. doi: 10.13374/j.issn2095-9389.2021.10.27.002
引用本文: 劉景森, 楊杰, 李煜. 面向全局和工程優化問題的混合進化JAYA算法[J]. 工程科學學報, 2023, 45(3): 431-445. doi: 10.13374/j.issn2095-9389.2021.10.27.002
LIU Jing-sen, YANG Jie, LI Yu. Hybrid evolutionary JAYA algorithm for global and engineering optimization problems[J]. Chinese Journal of Engineering, 2023, 45(3): 431-445. doi: 10.13374/j.issn2095-9389.2021.10.27.002
Citation: LIU Jing-sen, YANG Jie, LI Yu. Hybrid evolutionary JAYA algorithm for global and engineering optimization problems[J]. Chinese Journal of Engineering, 2023, 45(3): 431-445. doi: 10.13374/j.issn2095-9389.2021.10.27.002

面向全局和工程優化問題的混合進化JAYA算法

doi: 10.13374/j.issn2095-9389.2021.10.27.002
基金項目: 河南省重點研發與推廣專項資助項目(182102310886, 222102210065);國家自然科學基金資助項目(71601071)
詳細信息
    通訊作者:

    E-mail: leey@henu.edu.cn

  • 中圖分類號: TP18

Hybrid evolutionary JAYA algorithm for global and engineering optimization problems

More Information
  • 摘要: 為了更好求解復雜函數優化和工程約束優化問題,進一步增強JAYA算法的尋優能力,提出一種面向全局優化的混合進化JAYA算法。首先在計算當前最優和最差個體時引入反向學習機制,提高最優和最差個體跳離局部極值區域的可能性;然后在個體位置更新中引入并融合正弦余弦算子和差分擾動機制,不僅增加了種群的多樣性,而且較好平衡與滿足了算法在不同迭代時期對探索和挖掘能力的不同需求;最后在算法結構上采用奇偶不同的混合進化策略,有效利用不同演化機制的優勢結果,進一步提升了算法的收斂性和精度。之后給出了算法流程偽代碼,理論分析證明了改進算法的時間復雜度與基本JAYA相同,而通過6種代表性算法在包含和組合了30個基準函數的CEC2017測試套件上進行的多維度函數極值優化測試,以及對拉伸彈簧、波紋艙壁、管柱設計、鋼筋混凝土梁、焊接梁和汽車側面碰撞6個具有挑戰性的工程設計問題的優化求解,都清楚地表明改進后算法的尋優精度、收斂性能和求解穩定性均有顯著提升,在求解CEC復雜函數和工程約束優化問題上有著明顯優勢。

     

  • 圖  1  收斂曲線. (a) f21(x); (b) f22(x); (c) f25(x); (d) f26(x); (e) f29(x); (f) f30(x)

    Figure  1.  Convergence curves: (a) f21(x); (b) f22(x); (c) f25(x); (d) f26(x); (e) f29(x); (f) f30(x)

    表  1  6種算法在固定迭代次數下的尋優結果比較

    Table  1.   Comparison of the optimization results of six representative algorithms under fixed iteration times

    FunctionsAlgorithmsD=10D=50D=100
    BestMeanVarianceBestMeanVarianceBestMeanVariance
    f11(x)H-JAYA1.10×1031.11×1031.40×1011.37×1031.74×1031.65×1051.50×1043.94×1042.47×108
    IJAYA1.11×1031.12×1032.62×1013.87×1037.80×1032.20×1061.68×1052.55×1051.32×109
    CLJAYA1.11×1031.18×1034.57×1035.95×1031.27×1041.37×1079.30×1041.32×1053.71×108
    HFPSO1.11×1031.16×1032.65×1035.19×1031.43×1043.54×1071.12×1052.37×1055.10×109
    JAYA1.14×1031.19×1031.19×1035.59×1039.84×1036.79×1061.66×1052.68×1052.61×109
    WOA1.12×1031.22×1031.04×1042.93×1035.25×1031.65×1061.26×1052.31×1056.78×109
    f12(x)H-JAYA2.80×1031.01×1043.15×107 6.03×1064.80×1075.94×10154.18×1081.46×1091.74×1018
    IJAYA8.60×1044.01×1051.35×10111.18×1091.85×1091.55×10179.17×1091.20×10102.80×1018
    CLJAYA3.44×1034.28×1051.67×10127.36×1092.36×10106.40×10198.88×10101.35×10113.73×1020
    HFPSO3.02×1031.60×1041.33×1081.01×1078.26×1076.55×10157.82×1091.24×10101.99×1019
    JAYA6.17×1058.03×1064.38×10135.39×1097.86×1091.77×10182.86×10104.13×10105.16×1019
    WOA1.11×1044.99×1062.17×10134.90×1081.52×1094.04×10176.85×1091.30×10109.73×1018
    f19(x)H-JAYA1.90×1031.91×1035.47×101 2.84×1033.03×1043.91×109 7.24×1049.21×1051.60×1012
    IJAYA1.95×1032.89×1039.08×1051.00×1067.99×1062.24×10131.78×1084.39×1081.88×1016
    CLJAYA1.91×1031.95×1031.61×1031.16×1062.96×1071.00×10151.97×1097.38×1099.59×1018
    HFPSO1.94×1031.10×1048.86×1073.75×1053.69×1061.30×10133.11×1071.72×1083.85×1016
    JAYA1.94×1033.13×1038.75×1064.27×1061.36×1086.37×10151.32×1092.58×1093.29×1017
    WOA2.37×1037.89×1044.84×10103.42×1051.07×1078.86×10132.99×1071.25×1084.01×1015
    f20(x)H-JAYA2.00×1032.02×1031.49×1023.03×1033.37×1032.51×1045.01×1035.78×1036.10×104
    IJAYA2.04×1032.07×1032.05×1023.74×1034.11×1033.54×1047.21×1037.76×1037.01×104
    CLJAYA2.02×1032.07×1032.09×1033.06×1033.55×1038.07×1045.66×1036.82×1033.74×105
    HFPSO2.03×1032.14×1034.44×1032.86×1033.69×1031.84×1055.65×1037.25×1033.76×105
    JAYA2.05×1032.09×1039.96×1023.83×1034.28×1032.81×1047.30×1037.94×1038.05×104
    WOA2.07×1032.19×1036.29×1033.19×1033.91×1031.40×1055.37×1037.12×1033.94×105
    f21(x)H-JAYA2.20×1032.33×1032.87×1012.50×1032.55×1031.04×103 3.30×1033.47×1035.39×103
    IJAYA2.21×1032.33×1036.44×1022.67×1032.79×1031.69×1033.45×1033.61×1035.55×103
    CLJAYA2.20×1032.33×1034.23×1022.74×1032.96×1036.65×1033.85×1034.16×1032.72×104
    HFPSO2.21×1032.33×1033.11×1032.71×1032.82×1033.30×1033.48×1033.65×1031.09×104
    JAYA2.33×1032.34×1033.50×1012.78×1032.86×1031.17×1033.61×1033.79×1038.65×103
    WOA2.21×1032.33×1032.79×1032.81×1033.05×1031.16×1043.91×1034.36×1035.14×104
    f22(x)H-JAYA2.30×1032.31×1031.69×1012.58×1031.09×1043.02×1062.09×1042.50×1045.31×106
    IJAYA2.30×1032.31×1031.79×1001.41×1041.63×1042.41×1053.27×1043.44×1044.14×105
    CLJAYA2.22×1032.29×1031.40×1031.27×1041.48×1047.48×1052.87×1043.27×1042.48×106
    HFPSO2.31×1032.39×1031.02×1051.24×1041.50×1041.82×1062.83×1043.24×1043.61×106
    JAYA2.23×1032.32×1035.18×1021.54×1041.66×1042.06×1053.32×1043.48×1043.48×105
    WOA2.24×1032.51×1032.09×1051.10×1041.43×1042.11×1062.65×1043.09×1043.67×106
    f25(x)H-JAYA2.60×1032.89×1031.23×1043.09×1033.22×1035.72×1034.33×1035.20×1033.38×105
    IJAYA2.90×1032.90×1038.93×1013.34×1033.59×1031.92×1047.41×1039.95×1031.60×106
    CLJAYA2.90×1032.95×1032.57×1026.91×1039.93×1032.01×1061.68×1042.16×1044.38×106
    HFPSO2.90×1032.93×1038.41×1023.59×1034.20×1031.93×1054.97×1035.79×1034.79×105
    JAYA2.93×1032.96×1031.27×1023.93×1034.58×1031.61×1051.05×1041.48×1043.79×106
    WOA2.90×1032.95×1038.12×1023.75×1034.22×1031.04×1056.55×1038.12×1036.34×105
    f26(x)H-JAYA2.79×1032.99×1038.70×1027.08×1039.01×1033.21×1052.23×1042.54×1042.05×106
    IJAYA2.90×1033.11×1031.76×1058.98×1031.10×1049.90×1052.58×1043.01×1045.24×106
    CLJAYA2.91×1033.05×1032.59×1041.04×1041.32×1041.82×1062.97×1044.02×1041.82×107
    HFPSO2.81×1033.01×1031.15×1055.62×1039.75×1035.34×1067.77×1031.82×1041.41×107
    JAYA3.00×1033.52×1033.11×1051.01×1041.14×1043.74×1052.58×1042.97×1044.55×106
    WOA2.83×1033.61×1033.86×1051.03×1041.41×1041.63×1062.82×1043.62×1049.11×106
    f29(x)H-JAYA3.14×1033.17×1036.75×1025.10×1035.89×1031.33×1058.34×1039.85×1036.71×105
    IJAYA3.15×1033.20×1038.47×1025.31×1036.26×1031.39×1051.18×1041.37×1049.48×105
    CLJAYA3.15×1033.19×1031.44×1035.28×1038.55×1032.60×1061.89×1043.32×1041.12×108
    HFPSO3.17×1033.27×1034.25×1034.88×1036.25×1034.44×1059.86×1031.15×1041.20×106
    JAYA3.16×1033.22×1031.79×1036.14×1036.91×1032.38×1051.44×1041.83×1045.09×106
    WOA3.19×1033.39×1031.59×1045.54×1038.56×1033.26×1061.39×1041.85×1041.34×107
    f30(x)H-JAYA4.40×1031.06×1043.57×1087.80×1059.97×1061.83×10153.44×1061.82×1074.14×1014
    IJAYA7.46×1036.66×1051.22×10125.80×1071.38×1082.57×10153.95×1086.93×1082.14×1016
    CLJAYA4.48×1031.98×1062.45×10125.31×1073.07×1082.70×10163.09×1091.32×1103.27×1019
    HFPSO9.86×1037.09×1056.11×10116.77×1071.49×1082.60×10152.62×1089.42×1083.74×1017
    JAYA9.69×1033.75×1051.18×10116.08×1071.95×1081.71×10162.18×1094.27×1095.93×1017
    WOA8.17×1031.11×1061.65×10129.36×1072.54×1081.27×10166.34×1081.35×1093.02×1017
    下載: 導出CSV

    表  2  各算法求解CEC2017測試集套件Wilcoxon 秩和檢驗的p

    Table  2.   p-value for Wilcoxon’s rank-sum test on each algorithm used to solve the CEC2017 test suite

    FunctionsH-JAYA vs JAYA H-JAYA vs IJAYAH-JAYA vs CLJAYAH-JAYA vs WOAH-JAYA vs HFPSO
    p-value winp-value winp-value winp-value winp-value win
    f11(x)2.6917×10–13(+)2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+) 2.6917×10–13(+)
    f12(x)2.6917×10–13(+)2.6917×10–13(+)2.6917×10–13(+)2.6917×10–13(+)2.6917×10–13(+)
    f19(x)2.6917×10–13(+)2.6917×10–13(+)2.6917×10–13(+)2.6917×10–13(+)2.6917×10–13(+)
    f20(x)2.6734×10–4(+)2.6727×10–4(+)2.6727×10–4(+)2.6727×10–4(+)2.6727×10–4(+)
    f21(x)2.6693×10–4(+)2.6700×10–4(+)2.6727×10–4(+)2.6720×10–4(+)2.6720×10–4(+)
    f22(x)2.6720×10–4(+)2.6727×10–4(+)2.6734×10–4(+)2.6734×10–4(+)2.6734×10–4(+)
    f25(x)2.6734×10–4(+)2.6734×10–4(+)2.6734×10–4(+)2.6727×10–4(+)2.6727×10–4(+)
    f26(x)2.6734×10–4(+)2.6734×10–4(+)2.6727×10–4(+)2.6734×10–4(+)2.6734×10–4(+)
    f29(x)2.6734×10–4(+)2.6720×10–4(+)2.6734×10–4(+)2.6734×10–4(+)2.6734×10–4(+)
    f30(x)2.6917×10–13(+)2.6917×10–13(+)2.6917×10–13(+)2.6917×10–13(+)2.6917×10–13(+)
    (+/–/=)10/0/010/0/010/0/010/0/010/0/0
    下載: 導出CSV

    表  3  6種算法求解拉伸彈簧設計問題的尋優結果比較

    Table  3.   Comparison of the optimization results of six representative algorithms used to solve the tension/compression spring design problem

    AlgorithmsBestMeanVariance
    H-JAYA1.2665237000×10–21.2806874020×10–22.7477865853×10–8
    IJAYA1.2666032600×10–21.3032429118×10–22.1994218985×10–6
    CLJAYA1.2666232800×10–21.3068941340×10–21.2273508194×10–6
    JAYA1.2666917100×10–21.3185287610×10–21.9559284633×10–6
    HFPSO1.2665806000×10–21.2982082240×10–23.0289473131×10–7
    WOA1.2671936200×10–21.3894943310×10–22.4615922288×10–6
    下載: 導出CSV

    表  4  6種算法求解波紋艙壁設計問題的尋優結果比較

    Table  4.   Comparison of the optimization results of six representative algorithms used to solve the corrugated bulkhead design problem

    AlgorithmsBestMeanVariance
    H-JAYA6.84295801016.85745797303.5011426525×10–4
    IJAYA6.84295801017.54316614421.0303170764
    CLJAYA6.84295801018.22295801011.4648979592
    JAYA6.94295801018.66895801017.9828979592×10–1
    HFPSO6.89242745997.03607042472.4342757860×10–1
    WOA6.85898819257.18459625302.1316652625×10–1
    下載: 導出CSV

    表  5  6種算法求解管柱設計問題的尋優結果比較

    Table  5.   Comparison of the optimization results of six representative algorithms used to solve the tubular column design problem

    AlgorithmsBestMeanVariance
    H-JAYA2.6486361472×1012.6486976485×1012.7492263055×10–6
    IJAYA2.6486361473×1012.6770361473×1013.8922448975×10–2
    CLJAYA2.6486361472×1012.6840361472×1012.8248979592×10–2
    JAYA2.6686361472×1012.6910363872×1011.3289800884×10–2
    HFPSO2.6491554294×1012.6524256607×1014.0282119604×10–4
    WOA2.6491740158×1012.6831750349×1011.0260601687×10–1
    下載: 導出CSV

    表  6  6種算法求解鋼筋混凝土梁問題的尋優結果比較

    Table  6.   Comparison of the optimization results of six representative algorithms used to solve the reinforced concrete beam design problem

    AlgorithmsBestMeanVariance
    H-JAYA3.5920800000×1023.6080773841×1022.8418472149×102
    IJAYA3.6225000000×1023.7488260888×1021.5910386068×102
    CLJAYA3.6225000000×1023.7447556000×1021.3625233588×102
    JAYA3.6225000000×1023.9080088880×1022.4313100946×102
    HFPSO3.6925001569×1023.8520700009×1027.3955644549×101
    WOA3.6225106247×1023.6700943742×1024.3808572351×101
    下載: 導出CSV

    表  7  6種算法求解焊接梁設計問題的尋優結果比較

    Table  7.   Comparison of the optimization results of six representative algorithms used to solve the welded beam design problem

    AlgorithmsBestMeanVariance
    H-JAYA1.67021772631.68089837761.2670965769×10–3
    IJAYA1.67022583031.69024003522.0000233481×10–2
    CLJAYA1.67021772641.69021986531.9999912854×10–2
    JAYA1.67021773281.81657087431.2530675483×10–1
    HFPSO1.67026824572.04542105258.4760880179×10–2
    WOA1.71775014002.36096336255.8101787131×10–1
    下載: 導出CSV

    表  8  6種算法求解汽車側面碰撞問題的尋優結果比較

    Table  8.   Comparison of the optimization results of six representative algorithms used to solve the car side impact design problem

    AlgorithmsBestMeanVariance
    H-JAYA2.2848738268×1012.3445600597×1011.0419208431×10–1
    IJAYA2.2857969385×1012.3815013650×1012.7491744948×10–1
    CLJAYA2.3008501929×1012.3956603034×1016.5386322803×10–1
    JAYA2.3094202105×1012.3872171530×1017.0916777331×10–1
    HFPSO2.3207806520×1012.3570163892×1017.7055620394×10–1
    WOA2.3612634156×1012.5726584934×1012.0363936631
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Kennedy J, Eberhart R. Particle swarm optimization // Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, 1995: 1942
    [2] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput, 2004, 8(3): 256 doi: 10.1109/TEVC.2004.826067
    [3] Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems. Knowl Based Syst, 2016, 96: 120 doi: 10.1016/j.knosys.2015.12.022
    [4] Liu X J, Wang L G. A sine cosine algorithm based on differential evolution. Chin J Eng, 2020, 42(12): 1674

    劉小娟, 王聯國. 一種基于差分進化的正弦余弦算法. 工程科學學報, 2020, 42(12):1674
    [5] Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Softw, 2016, 95: 51 doi: 10.1016/j.advengsoft.2016.01.008
    [6] Azizi M. Atomic orbital search: A novel metaheuristic algorithm. Appl Math Model, 2021, 93: 657 doi: 10.1016/j.apm.2020.12.021
    [7] Kar D, Ghosh M, Guha R, et al. Fuzzy mutation embedded hybrids of gravitational search and Particle Swarm Optimization methods for engineering design problems. Eng Appl Artif Intell, 2020, 95: 103847 doi: 10.1016/j.engappai.2020.103847
    [8] Liu S Y, Jin A Z. A co-evolutionary teaching-learning-based optimization algorithm for constrained optimization problems. Acta Autom Sin, 2018, 44(9): 1690

    劉三陽, 靳安釗. 求解約束優化問題的協同進化教與學優化算法. 自動化學報, 2018, 44(9):1690
    [9] Banaie-Dezfouli M, Nadimi-Shahraki M H, Beheshti Z. R-GWO: Representative-based grey wolf optimizer for solving engineering problems. Appl Soft Comput, 2021, 106: 107328 doi: 10.1016/j.asoc.2021.107328
    [10] Xiao Z Y, Liu S. Study on elite opposition-based golden-sine whale optimization algorithm and its application of project optimization. Acta Electron Sin, 2019, 47(10): 2177 doi: 10.3969/j.issn.0372-2112.2019.10.020

    肖子雅, 劉升. 精英反向黃金正弦鯨魚算法及其工程優化研究. 電子學報, 2019, 47(10):2177 doi: 10.3969/j.issn.0372-2112.2019.10.020
    [11] Nadimi-Shahraki M H, Taghian S, Mirjalili S. An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl, 2021, 166: 113917 doi: 10.1016/j.eswa.2020.113917
    [12] Wang Y H, Gao L. Improvement of crow search algorithm and its application in engineering constrained optimization problems. Comput Integr Manuf Syst, 2021, 27(7): 1871

    汪逸暉, 高亮. 烏鴉搜索算法的改進及其在工程約束優化問題中的應用. 計算機集成制造系統, 2021, 27(7):1871
    [13] Rao R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Industrial Eng Comput, 2016, 7(1): 19
    [14] Yu K J, Liang J J, Qu B Y, et al. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers Manag, 2017, 150: 742 doi: 10.1016/j.enconman.2017.08.063
    [15] Kang F, Li J J, Dai J H. Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms. Adv Eng Softw, 2019, 131: 60 doi: 10.1016/j.advengsoft.2019.03.003
    [16] Ingle K K, Jatoth D R K. An efficient JAYA algorithm with lévy flight for non-linear channel equalization. Expert Syst Appl, 2020, 145: 112970 doi: 10.1016/j.eswa.2019.112970
    [17] Iacca G, Junior V C S, Melo V V. An improved Jaya optimization algorithm with Lévy flight. Expert Syst Appl, 2021, 165: 113902 doi: 10.1016/j.eswa.2020.113902
    [18] Zhao F Q, Ma R, Wang L. A self-learning discrete jaya algorithm for multiobjective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system. IEEE Trans Cybern, 6181, PP(99): 1
    [19] Kang F, Wu Y R, Li J J, et al. Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model. Adv Eng Inform, 2021, 49: 101348 doi: 10.1016/j.aei.2021.101348
    [20] Zhang Y Y, Chi A N, Mirjalili S. Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems. Knowl Based Syst, 2021, 233: 107555 doi: 10.1016/j.knosys.2021.107555
    [21] Nayak D R, Zhang Y D, Das D S, et al. MJaya-ELM: A Jaya algorithm with mutation and extreme learning machine based approach for sensorineural hearing loss detection. Appl Soft Comput, 2019, 83: 105626 doi: 10.1016/j.asoc.2019.105626
    [22] Zhang Y Y, Ma M D, Jin Z G. Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models. Energy, 2020, 211: 118644 doi: 10.1016/j.energy.2020.118644
    [23] Zhang Y Y, Jin Z G. Comprehensive learning Jaya algorithm for engineering design optimization problems. J Intell Manuf, 2021: 1
    [24] Liu J S, Ma Y X, Li Y. Improved butterfly algorithm for multi-dimensional complex function optimization problem. Acta Electron Sin, 2021, 49(6): 1068 doi: 10.12263/DZXB.20200148

    劉景森, 馬義想, 李煜. 改進蝴蝶算法求解多維復雜函數優化問題. 電子學報, 2021, 49(6):1068 doi: 10.12263/DZXB.20200148
    [25] Liu J S, Mao Y N, Liu X Z, et al. A dynamic adaptive firefly algorithm with globally orientation. Math Comput Simul, 2020, 174: 76 doi: 10.1016/j.matcom.2020.02.020
    [26] Wu G, Mallipeddi R, Suganthan P N. Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization [EB/OL]. Technical Repore Online (2017-09) [2021-10-27]. https://www.researchgate.net/profile/Guohua-Wu-5/publication/317228117_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2017_Competition_and_Special_Session_on_Constrained_Single_Objective_Real-Parameter_Optimization/links/5982cdbaa6fdcc8b56f59104/Problem-Definitions-and-Evaluation-Criteria-for-the-CEC-2017-Competition-and-Special-Session-on-Constrained-Single-Objective-Real-Parameter-Optimization.pdf
    [27] Aydilek ? B. A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems. Appl Soft Comput, 2018, 66: 232 doi: 10.1016/j.asoc.2018.02.025
    [28] Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput, 2011, 1(1): 3 doi: 10.1016/j.swevo.2011.02.002
    [29] Kumar A, Wu G H, Ali M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput, 2020, 56: 100693 doi: 10.1016/j.swevo.2020.100693
    [30] Li Y, Zhao Y R, Liu J S. Dimension by dimension dynamic sine cosine algorithm for global optimization problems. Appl Soft Comput, 2021, 98: 106933 doi: 10.1016/j.asoc.2020.106933
    [31] Salgotra R, Singh U, Singh S, et al. Self-adaptive salp swarm algorithm for engineering optimization problems. Appl Math Model, 2021, 89: 188 doi: 10.1016/j.apm.2020.08.014
    [32] Liu J S, Ma Y X, Li Y. Improved whale algorithm for solving engineering design optimization problems. Comput Integr Manuf Syst, 2021, 27(7): 1884

    劉景森, 馬義想, 李煜. 改進鯨魚算法求解工程設計優化問題. 計算機集成制造系統, 2021, 27(7):1884
  • 加載中
圖(1) / 表(8)
計量
  • 文章訪問數:  637
  • HTML全文瀏覽量:  226
  • PDF下載量:  78
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-27
  • 網絡出版日期:  2022-01-01
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回