-
摘要: 為滿足控制臂的輕量化設計需求,提出了一種采用碳纖維復合材料(CFRP)?泡沫鋁夾芯結構的汽車懸架控制臂,并對CFRP面板進行結構優化設計。通過泡沫鋁準靜態壓縮試驗驗證了泡沫鋁六面體胞孔模型的準確性,利用CFRP力學性能試驗獲得了碳纖維復合材料的性能參數,設計一種由CFRP?泡沫鋁夾芯結構本體和鋁合金連接件組成的懸架控制臂,控制臂本體與連接件之間采用膠?螺混合連接。在此基礎上,建立CFRP?泡沫鋁夾芯結構控制臂有限元模型,利用多層次優化方法對CFRP面板進行鋪層優化。結果表明,相較于鋼制控制臂,優化后夾芯結構控制臂的質量減少了26%,同時強度、剛度和模態性能都有所改善。
-
關鍵詞:
- 懸架控制臂 /
- CFRP?泡沫鋁夾芯結構 /
- 泡沫鋁六面體胞孔模型 /
- 準靜態壓縮 /
- 多層次優化
Abstract: To meet the lightweight design requirements of the control arm, an automobile suspension control arm with a carbon fiber reinforced plastics (CFRP)–aluminum foam sandwich structure was proposed, and the structure optimization design of the CFRP panel was performed. The accuracy of the cellular pore model of aluminum foam hexahedron was verified by the quasi-static compression test of aluminum foam. The performance parameters of carbon fiber reinforced plastics were obtained by the mechanical property test of CFRP. A suspension control arm composed of a CFRP–aluminum foam sandwich structure body and an aluminum alloy connector was designed, and the adhesive-bolted hybrid joint was used to connect the two. Based on this, the finite element model of the control arm of the CFRP–aluminum foam sandwich structure was established. The porosity of aluminum foam in the sandwich was 55%. The multi-level optimization method was used to optimize the layering of the CFRP panels. Free size optimization was used to obtain the layered shape of CFRP under four classical ply angles, during which the mass of the panel was reduced while its stiffness improved. Based on the regularization of the CFRP layer, the ply thickness was discretized into manufacturing thickness by size optimization. Simultaneously, the number of layers of the panel was determined, and its mass was further reduced as the stiffness of the composite material is also dependent on the ply angle. Therefore, the arrangement order of the classical ply angle was obtained by ply stacking sequence optimization, further improving the panel stiffness. The results show that compared with the steel control arm, the mass of the optimized sandwich structure control arm was reduced by 26%. Simultaneously, the maximum stress at the foam aluminum sandwich was reduced from 225.6 MPa before optimization to 151.2 MPa. The safety factor and the failure coefficient of the CFRP panel after optimization were 1.1 and 0.81, respectively, both meeting the strength requirements. From the stiffness perspective, the longitudinal stiffness of the optimized control arm increased by 54.7% compared to the initial control arm of the sandwich structure, 103.2% compared to the steel control arm, and the lateral stiffness increased by 37% compared to the initial control arm of the sandwich structure and 56% compared to the steel control arm, respectively. Thus, the stiffness improvement effect was obvious. The first-order modal frequency of the optimized control arm was 785 Hz, 573.1 Hz higher than that of the steel control arm, and the vibration performance was significantly improved. -
表 1 泡沫鋁力學性能參數
Table 1. Mechanical property parameters of the aluminum foam
Density /(g·cm-3) Elastic modulus /MPa Strength/MPa Poisson ratio 0.28 200.08 1.98 0 表 2 碳纖維單向預浸料參數
Table 2. Parameters of the unidirectional carbon fiber prepreg
Areal density /
(g·m?2)Resin volume
fraction /%Fiber content /
(g·m?2)Thickness /
mm290 31 200 0.2 表 3 試件尺寸
Table 3. Specimen size
Test types Ply angle/(°) Length /mm Width /mm Thickness /mm Tension 0 250 15 2 90 175 25 2 Compression 0 140 12 2 90 140 12 2 Shear 45/?45 250 15 2 表 4 CFRP力學性能參數
Table 4. Mechanical properties of CFRP
Material parameter Value Destiny, ρ/ (g·cm?3) 1.60 0° tensile modulus, E1t/GPa 125.46 90° tensile modulus, E2t/GPa 7.68 In-plane shear modulus, G12/GPa 6.35 Poisson ratio, v12 0.31 0° tensile strength, Tx/MPa 860.58 90° tensile strength, Ty/MPa 45.98 0° compressive strength, Cx/MPa 550.25 90° compressive strength, Cy/MPa 150.32 In-plane shear strength, S/MPa 107.56 表 5 控制臂結構強度分析載荷工況
Table 5. Load conditions for the control arm structure strength analysis
Position Direction Forces applied on the control arm under
three working conditions/NBraking Diversion Maximum speed Outer point x ?739.9 638.9 ?2338.7 y ?1086.6 2613.7 ?3481.7 z ?67.6 175.9 143.4 Front point x 221.8 573.5 527.5 y ?1886.2 2287.9 ?6234.5 z ?293.9 ?407.4 ?858.8 Rear point x 116.5 73.8 166.7 y 752.1 ?551.7 2406.7 z 293.7 407.1 856.8 表 6 控制臂性能仿真結果
Table 6. Simulation results of the control arm performance
Control arm type Maximum stress /MPa Longitudinal rigidity /
(N·mm?1)Lateral rigidity /(N·mm?1) First natural frequency /Hz Mass/kg Braking Diversion Full speed Steel-made 92.6 92.6 295.1 10360 5650 211.9 2.7 Initial 70.9 119.1 225.6 13605 4962 683 1.823 Optimized 48.6 82.1 151.2 21052 7752 683 1.998 www.77susu.com -
參考文獻
[1] Zhao X Y, Zhang S R. Lightweight design method for electric vehicle battery boxes made by composite materials. China Mech Eng, 2018, 29(9): 1044趙曉昱, 張樹仁. 電動車復合材料電池盒輕量化設計方法. 中國機械工程, 2018, 29(9):1044 [2] Ma F W, Xiong C L, Yang M, et al. Optimization and performance analysis of CFRP automotive B-pillar reinforced plate. J Hunan Univ Nat Sci, 2019, 46(8): 36馬芳武, 熊長麗, 楊猛, 等. 碳纖維復合材料汽車B柱加強板的優化與性能分析. 湖南大學學報(自然科學版), 2019, 46(8):36 [3] Bai C P, Ma Q H, Zhou T J. Concurred optimal design of structure and manufacturing process of CFRP oil pan for vehicles. Chin J Eng Des, 2020, 27(5): 608白翠平, 馬其華, 周天俊. 車用CFRP油底殼的結構與制造工藝并行優化設計. 工程設計學報, 2020, 27(5):608 [4] Chen J J, Xu Y N, Gao Y K. Topology optimization of metal and carbon fiber reinforced plastic (CFRP) laminated battery-hanging structure. Polymers, 2020, 12(11): 2495 doi: 10.3390/polym12112495 [5] Zhang J Y, Chen J L, Li Z Y, et al. Optimisation design of CFRP passenger car seat backplane based on impact characteristics. Int J Crashworthiness, 2021, 26(4): 355 doi: 10.1080/13588265.2020.1717919 [6] Qin R M, Zhu B, Qiao K, et al. Simulation study of the protective performance of composite structure carbon fiber bulletproof board. Chin J Eng, 2021, 43(10): 1346秦溶蔓, 朱波, 喬琨, 等. 復合結構碳纖維防彈板的防彈性能仿真. 工程科學學報, 2021, 43(10):1346 [7] Chen G, Lu S, Zhao Z J, et al. Lightweight design of CFRP thin-walled beam bumper with twelve right-angle section. Automot Eng, 2019, 41(2): 232陳光, 路深, 趙紫劍, 等. CFRP十二直角薄壁梁保險杠的輕量化設計. 汽車工程, 2019, 41(2):232 [8] Liu Y, Jiang R C, Liu D W, et al. Lightweight design of carbon fiber reinforced plastic suspension control arm. Fiber Reinf Plast, 2019(8): 47劉越, 蔣榮超, 劉大維, 等. 碳纖維復合材料懸架控制臂輕量化設計研究. 玻璃鋼/復合材料, 2019(8):47 [9] Yang Z L, Ning H M, Hu N, et al. Optimal design of the structure of CFRP-TRB supper-hybrid composite B pillar. J Chongqing Univ, 2020, 43(8): 23楊中磊, 寧慧銘, 胡寧, 等. CFRP-TRB超混雜復合汽車B柱結構的優化設計. 重慶大學學報, 2020, 43(8):23 [10] Gao Y K, Liu Z, Xu Y N, et al. Research on the application of CFRP in automobile panels. Automot Eng, 2020, 42(7): 978高云凱, 劉哲, 徐亞男, 等. CFRP在汽車覆蓋件中的應用研究. 汽車工程, 2020, 42(7):978 [11] Yoo S, Doh J, Lim J, et al. Topologically optimized shape of CFRP front lower control ARM. Int J Automot Technol, 2017, 18(4): 625 doi: 10.1007/s12239-017-0062-0 [12] Ma Q H, Zha Y B, Dong B Y, et al. Structure design and multiobjective optimization of CFRP/aluminum hybrid crash box. Polym Compos, 2020, 41(10): 4202 doi: 10.1002/pc.25705 [13] Liu Q, Liufu K M, Cui Z L, et al. Multiobjective optimization of perforated square CFRP tubes for crashworthiness. Thin Walled Struct, 2020, 149: 106628 doi: 10.1016/j.tws.2020.106628 [14] Lan F C, Ma C C, Chen J Q, et al. Structural design optimization of split typed flip tubes filled with aluminum foam. J Mech Eng, 2017, 53(12): 156 doi: 10.3901/JME.2017.12.156蘭鳳崇, 馬聰承, 陳吉清, 等. 泡沫鋁填充分體式翻轉結構設計與優化分析. 機械工程學報, 2017, 53(12):156 doi: 10.3901/JME.2017.12.156 [15] Cheng P, Li W, Zhai M G, et al. Structure performance optimization of double-layer aluminum foam sandwich panels under rockfalls impact. J Vib Shock, 2018, 37(5): 85程鵬, 李偉, 翟敏剛, 等. 雙層泡沫鋁夾芯板抗滾石沖擊結構性能優化研究. 振動與沖擊, 2018, 37(5):85 [16] Gan N F, Wang D H, Feng Y N, et al. Numerical simulation and experimental verification of energy absorption performance of PU foam filled CFRP cone tubes. China Mech Eng, 2018, 29(5): 609干年妃, 王多華, 馮亞楠, 等. 聚氨酯泡沫填充的碳纖維增強復合材料錐管吸能性能數值模擬及試驗驗證. 中國機械工程, 2018, 29(5):609 [17] Cui A, Liu F F, Zhang H, et al. Performance analysis and optimization of foam-filled aluminum-alloy corrugated sandwich panel structure for vehicle body. Automot Eng, 2019, 41(10): 1221崔岸, 劉芳芳, 張晗, 等. 車身泡沫填充鋁合金波紋夾芯板結構性能分析與優化. 汽車工程, 2019, 41(10):1221 [18] Cui Y Y, Liu Z F, Li S Q. Dynamic response of aluminum foam sandwich circular tubes with different constraints under lateral impact loadings. Chin J Appl Mech, 2021, 38(1): 26崔堯堯, 劉志芳, 李世強. 橫向沖擊載荷下不同約束泡沫鋁夾芯圓管的動態響應. 應用力學學報, 2021, 38(1):26 [19] Wang Y H, Liew J Y R, Lee S C, et al. Experimental and analytical studies of a novel aluminum foam filled energy absorption connector under quasi-static compression loading. Eng Struct, 2017, 131: 136 doi: 10.1016/j.engstruct.2016.10.020 [20] Bragagnolo G, Crocombe A D, Ogin S L, et al. Investigation of skin-core debonding in sandwich structures with foam cores. Mater Des, 2020, 186: 108312 doi: 10.1016/j.matdes.2019.108312 [21] Taherkhani B, Kadkhodapour J, Anaraki A P, et al. Drop impact of closed-cell aluminum foam: Experiment and simulation. J Fail Anal Prev, 2020, 20(2): 464 doi: 10.1007/s11668-020-00843-8 [22] Xin Y J, Yan H M, Cheng S L, et al. Drop weight impact tests on composite sandwich panel of aluminum foam and epoxy resin. Mech Adv Mater Struct, 2021, 28(4): 343 doi: 10.1080/15376494.2018.1564853 [23] Le T C. The Finite Element Analysis and Structure Optimization of Sedan Car Suspension Control Arm [Dissertation]. Changchun: Jilin University, 2009樂天聰. 某轎車懸架控制臂有限元分析與結構優化[學位論文]. 長春: 吉林大學, 2009 [24] China Aviation Research Institute. Handbook of Composite Material Connection. Beijing: Aviation Industry Press, 1994中國航空研究院. 復合材料連接手冊. 北京: 航空工業出版社, 1994 [25] Kweon J H, Jung J W, Kim T H, et al. Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Compos Struct, 2006, 75(1-4): 192 doi: 10.1016/j.compstruct.2006.04.013 -