<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

CFRP?泡沫鋁夾芯結構控制臂優化設計

顧宗陽 蔣榮超 劉大維 孫海霞

顧宗陽, 蔣榮超, 劉大維, 孫海霞. CFRP?泡沫鋁夾芯結構控制臂優化設計[J]. 工程科學學報, 2023, 45(3): 446-453. doi: 10.13374/j.issn2095-9389.2021.10.23.001
引用本文: 顧宗陽, 蔣榮超, 劉大維, 孫海霞. CFRP?泡沫鋁夾芯結構控制臂優化設計[J]. 工程科學學報, 2023, 45(3): 446-453. doi: 10.13374/j.issn2095-9389.2021.10.23.001
GU Zong-yang, JIANG Rong-chao, LIU Da-wei, SUN Hai-xia. Optimization design of the control arm of CFRP–aluminum foam sandwich structure[J]. Chinese Journal of Engineering, 2023, 45(3): 446-453. doi: 10.13374/j.issn2095-9389.2021.10.23.001
Citation: GU Zong-yang, JIANG Rong-chao, LIU Da-wei, SUN Hai-xia. Optimization design of the control arm of CFRP–aluminum foam sandwich structure[J]. Chinese Journal of Engineering, 2023, 45(3): 446-453. doi: 10.13374/j.issn2095-9389.2021.10.23.001

CFRP?泡沫鋁夾芯結構控制臂優化設計

doi: 10.13374/j.issn2095-9389.2021.10.23.001
基金項目: 國家自然科學基金資助項目(51805286);山東省自然科學基金資助項目(2017PEE004)
詳細信息
    通訊作者:

    E-mail: jrch123@126.com

  • 中圖分類號: U463.1

Optimization design of the control arm of CFRP–aluminum foam sandwich structure

More Information
  • 摘要: 為滿足控制臂的輕量化設計需求,提出了一種采用碳纖維復合材料(CFRP)?泡沫鋁夾芯結構的汽車懸架控制臂,并對CFRP面板進行結構優化設計。通過泡沫鋁準靜態壓縮試驗驗證了泡沫鋁六面體胞孔模型的準確性,利用CFRP力學性能試驗獲得了碳纖維復合材料的性能參數,設計一種由CFRP?泡沫鋁夾芯結構本體和鋁合金連接件組成的懸架控制臂,控制臂本體與連接件之間采用膠?螺混合連接。在此基礎上,建立CFRP?泡沫鋁夾芯結構控制臂有限元模型,利用多層次優化方法對CFRP面板進行鋪層優化。結果表明,相較于鋼制控制臂,優化后夾芯結構控制臂的質量減少了26%,同時強度、剛度和模態性能都有所改善。

     

  • 圖  1  泡沫鋁試件

    Figure  1.  Aluminum foam specimen

    圖  2  泡沫鋁準靜態壓縮試驗. (a) 壓縮0 mm; (b) 壓縮20 mm; (c) 壓縮30 mm; (d) 壓縮40 mm

    Figure  2.  Quasi-static compression deformation process of the hexahedral cellular aluminum foam: (a) compression 0 mm; (b) compression 20 mm; (c) compression 30 mm; (d) compression 40 mm

    圖  3  泡沫鋁應力?應變曲線

    Figure  3.  Stress–strain curve of the aluminum foam

    圖  4  泡沫鋁準靜態壓縮變形過程. (a) 壓縮0 mm; (b) 壓縮20 mm; (c) 壓縮30 mm; (d) 壓縮40 mm

    Figure  4.  Quasi-static compression deformation process of the hexahedral cellular aluminum foam: (a) compression 0 mm; (b) compression 20 mm; (c) compression 30 mm; (d) compression 40 mm

    圖  5  泡沫鋁應力-應變曲線仿真與試驗結果對比

    Figure  5.  Comparison of the simulation and experimental results of the stress–strain curve of the aluminum foam

    圖  6  CFRP層合板制備過程

    Figure  6.  Preparation process of CFRP laminates

    圖  7  CFRP試件及試驗過程. (a) 拉伸; (b) 壓縮

    Figure  7.  CFRP specimen and test process: (a) tensile; (b) compression

    圖  8  鋼制控制臂有限元模型

    Figure  8.  Finite element model of the steel control arm

    圖  9  夾芯結構控制臂模型

    Figure  9.  Control arm model of the sandwich structure

    圖  10  自由尺寸優化結果

    Figure  10.  Free size optimization results

    圖  11  自由尺寸優化修整結果. (a) 0°鋪層; (b) ±45°鋪層; (c) 90°鋪層

    Figure  11.  Free size optimization results: (a) 0°ply; (b) ±45°ply; (c) 90°ply

    圖  12  CFRP面板鋪層順序優化結果

    Figure  12.  Optimization results of the CFRP panel stacking sequence

    圖  13  控制臂質量及縱向剛度變化

    Figure  13.  Control arm mass and longitudinal stiffness change

    表  1  泡沫鋁力學性能參數

    Table  1.   Mechanical property parameters of the aluminum foam

    Density /(g·cm-3)Elastic modulus /MPaStrength/MPaPoisson ratio
    0.28200.081.980
    下載: 導出CSV

    表  2  碳纖維單向預浸料參數

    Table  2.   Parameters of the unidirectional carbon fiber prepreg

    Areal density /
    (g·m?2)
    Resin volume
    fraction /%
    Fiber content /
    (g·m?2)
    Thickness /
    mm
    290312000.2
    下載: 導出CSV

    表  3  試件尺寸

    Table  3.   Specimen size

    Test typesPly angle/(°)Length /mmWidth /mmThickness /mm
    Tension0250152
    90175252
    Compression0140122
    90140122
    Shear45/?45250152
    下載: 導出CSV

    表  4  CFRP力學性能參數

    Table  4.   Mechanical properties of CFRP

    Material parameterValue
    Destiny, ρ/ (g·cm?3)1.60
    0° tensile modulus, E1t/GPa125.46
    90° tensile modulus, E2t/GPa7.68
    In-plane shear modulus, G12/GPa6.35
    Poisson ratio, v120.31
    0° tensile strength, Tx/MPa860.58
    90° tensile strength, Ty/MPa45.98
    0° compressive strength, Cx/MPa550.25
    90° compressive strength, Cy/MPa150.32
    In-plane shear strength, S/MPa107.56
    下載: 導出CSV

    表  5  控制臂結構強度分析載荷工況

    Table  5.   Load conditions for the control arm structure strength analysis

    PositionDirectionForces applied on the control arm under
    three working conditions/N
    BrakingDiversionMaximum speed
    Outer pointx?739.9638.9?2338.7
    y?1086.62613.7?3481.7
    z?67.6175.9143.4
    Front pointx221.8573.5527.5
    y?1886.22287.9?6234.5
    z?293.9?407.4?858.8
    Rear pointx116.573.8166.7
    y752.1?551.72406.7
    z293.7407.1856.8
    下載: 導出CSV

    表  6  控制臂性能仿真結果

    Table  6.   Simulation results of the control arm performance

    Control arm typeMaximum stress /MPaLongitudinal rigidity /
    (N·mm?1)
    Lateral rigidity /(N·mm?1)First natural frequency /HzMass/kg
    BrakingDiversionFull speed
    Steel-made92.692.6295.1103605650211.92.7
    Initial70.9119.1225.61360549626831.823
    Optimized48.682.1151.22105277526831.998
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhao X Y, Zhang S R. Lightweight design method for electric vehicle battery boxes made by composite materials. China Mech Eng, 2018, 29(9): 1044

    趙曉昱, 張樹仁. 電動車復合材料電池盒輕量化設計方法. 中國機械工程, 2018, 29(9):1044
    [2] Ma F W, Xiong C L, Yang M, et al. Optimization and performance analysis of CFRP automotive B-pillar reinforced plate. J Hunan Univ Nat Sci, 2019, 46(8): 36

    馬芳武, 熊長麗, 楊猛, 等. 碳纖維復合材料汽車B柱加強板的優化與性能分析. 湖南大學學報(自然科學版), 2019, 46(8):36
    [3] Bai C P, Ma Q H, Zhou T J. Concurred optimal design of structure and manufacturing process of CFRP oil pan for vehicles. Chin J Eng Des, 2020, 27(5): 608

    白翠平, 馬其華, 周天俊. 車用CFRP油底殼的結構與制造工藝并行優化設計. 工程設計學報, 2020, 27(5):608
    [4] Chen J J, Xu Y N, Gao Y K. Topology optimization of metal and carbon fiber reinforced plastic (CFRP) laminated battery-hanging structure. Polymers, 2020, 12(11): 2495 doi: 10.3390/polym12112495
    [5] Zhang J Y, Chen J L, Li Z Y, et al. Optimisation design of CFRP passenger car seat backplane based on impact characteristics. Int J Crashworthiness, 2021, 26(4): 355 doi: 10.1080/13588265.2020.1717919
    [6] Qin R M, Zhu B, Qiao K, et al. Simulation study of the protective performance of composite structure carbon fiber bulletproof board. Chin J Eng, 2021, 43(10): 1346

    秦溶蔓, 朱波, 喬琨, 等. 復合結構碳纖維防彈板的防彈性能仿真. 工程科學學報, 2021, 43(10):1346
    [7] Chen G, Lu S, Zhao Z J, et al. Lightweight design of CFRP thin-walled beam bumper with twelve right-angle section. Automot Eng, 2019, 41(2): 232

    陳光, 路深, 趙紫劍, 等. CFRP十二直角薄壁梁保險杠的輕量化設計. 汽車工程, 2019, 41(2):232
    [8] Liu Y, Jiang R C, Liu D W, et al. Lightweight design of carbon fiber reinforced plastic suspension control arm. Fiber Reinf Plast, 2019(8): 47

    劉越, 蔣榮超, 劉大維, 等. 碳纖維復合材料懸架控制臂輕量化設計研究. 玻璃鋼/復合材料, 2019(8):47
    [9] Yang Z L, Ning H M, Hu N, et al. Optimal design of the structure of CFRP-TRB supper-hybrid composite B pillar. J Chongqing Univ, 2020, 43(8): 23

    楊中磊, 寧慧銘, 胡寧, 等. CFRP-TRB超混雜復合汽車B柱結構的優化設計. 重慶大學學報, 2020, 43(8):23
    [10] Gao Y K, Liu Z, Xu Y N, et al. Research on the application of CFRP in automobile panels. Automot Eng, 2020, 42(7): 978

    高云凱, 劉哲, 徐亞男, 等. CFRP在汽車覆蓋件中的應用研究. 汽車工程, 2020, 42(7):978
    [11] Yoo S, Doh J, Lim J, et al. Topologically optimized shape of CFRP front lower control ARM. Int J Automot Technol, 2017, 18(4): 625 doi: 10.1007/s12239-017-0062-0
    [12] Ma Q H, Zha Y B, Dong B Y, et al. Structure design and multiobjective optimization of CFRP/aluminum hybrid crash box. Polym Compos, 2020, 41(10): 4202 doi: 10.1002/pc.25705
    [13] Liu Q, Liufu K M, Cui Z L, et al. Multiobjective optimization of perforated square CFRP tubes for crashworthiness. Thin Walled Struct, 2020, 149: 106628 doi: 10.1016/j.tws.2020.106628
    [14] Lan F C, Ma C C, Chen J Q, et al. Structural design optimization of split typed flip tubes filled with aluminum foam. J Mech Eng, 2017, 53(12): 156 doi: 10.3901/JME.2017.12.156

    蘭鳳崇, 馬聰承, 陳吉清, 等. 泡沫鋁填充分體式翻轉結構設計與優化分析. 機械工程學報, 2017, 53(12):156 doi: 10.3901/JME.2017.12.156
    [15] Cheng P, Li W, Zhai M G, et al. Structure performance optimization of double-layer aluminum foam sandwich panels under rockfalls impact. J Vib Shock, 2018, 37(5): 85

    程鵬, 李偉, 翟敏剛, 等. 雙層泡沫鋁夾芯板抗滾石沖擊結構性能優化研究. 振動與沖擊, 2018, 37(5):85
    [16] Gan N F, Wang D H, Feng Y N, et al. Numerical simulation and experimental verification of energy absorption performance of PU foam filled CFRP cone tubes. China Mech Eng, 2018, 29(5): 609

    干年妃, 王多華, 馮亞楠, 等. 聚氨酯泡沫填充的碳纖維增強復合材料錐管吸能性能數值模擬及試驗驗證. 中國機械工程, 2018, 29(5):609
    [17] Cui A, Liu F F, Zhang H, et al. Performance analysis and optimization of foam-filled aluminum-alloy corrugated sandwich panel structure for vehicle body. Automot Eng, 2019, 41(10): 1221

    崔岸, 劉芳芳, 張晗, 等. 車身泡沫填充鋁合金波紋夾芯板結構性能分析與優化. 汽車工程, 2019, 41(10):1221
    [18] Cui Y Y, Liu Z F, Li S Q. Dynamic response of aluminum foam sandwich circular tubes with different constraints under lateral impact loadings. Chin J Appl Mech, 2021, 38(1): 26

    崔堯堯, 劉志芳, 李世強. 橫向沖擊載荷下不同約束泡沫鋁夾芯圓管的動態響應. 應用力學學報, 2021, 38(1):26
    [19] Wang Y H, Liew J Y R, Lee S C, et al. Experimental and analytical studies of a novel aluminum foam filled energy absorption connector under quasi-static compression loading. Eng Struct, 2017, 131: 136 doi: 10.1016/j.engstruct.2016.10.020
    [20] Bragagnolo G, Crocombe A D, Ogin S L, et al. Investigation of skin-core debonding in sandwich structures with foam cores. Mater Des, 2020, 186: 108312 doi: 10.1016/j.matdes.2019.108312
    [21] Taherkhani B, Kadkhodapour J, Anaraki A P, et al. Drop impact of closed-cell aluminum foam: Experiment and simulation. J Fail Anal Prev, 2020, 20(2): 464 doi: 10.1007/s11668-020-00843-8
    [22] Xin Y J, Yan H M, Cheng S L, et al. Drop weight impact tests on composite sandwich panel of aluminum foam and epoxy resin. Mech Adv Mater Struct, 2021, 28(4): 343 doi: 10.1080/15376494.2018.1564853
    [23] Le T C. The Finite Element Analysis and Structure Optimization of Sedan Car Suspension Control Arm [Dissertation]. Changchun: Jilin University, 2009

    樂天聰. 某轎車懸架控制臂有限元分析與結構優化[學位論文]. 長春: 吉林大學, 2009
    [24] China Aviation Research Institute. Handbook of Composite Material Connection. Beijing: Aviation Industry Press, 1994

    中國航空研究院. 復合材料連接手冊. 北京: 航空工業出版社, 1994
    [25] Kweon J H, Jung J W, Kim T H, et al. Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Compos Struct, 2006, 75(1-4): 192 doi: 10.1016/j.compstruct.2006.04.013
  • 加載中
圖(13) / 表(6)
計量
  • 文章訪問數:  500
  • HTML全文瀏覽量:  177
  • PDF下載量:  43
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-23
  • 網絡出版日期:  2022-01-20
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回