<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

面向2035年的金屬礦深部多場智能開采發展戰略

郭奇峰 蔡美峰 吳星輝 席迅 馬明輝 張杰

郭奇峰, 蔡美峰, 吳星輝, 席迅, 馬明輝, 張杰. 面向2035年的金屬礦深部多場智能開采發展戰略[J]. 工程科學學報, 2022, 44(4): 476-486. doi: 10.13374/j.issn2095-9389.2021.10.22.004
引用本文: 郭奇峰, 蔡美峰, 吳星輝, 席迅, 馬明輝, 張杰. 面向2035年的金屬礦深部多場智能開采發展戰略[J]. 工程科學學報, 2022, 44(4): 476-486. doi: 10.13374/j.issn2095-9389.2021.10.22.004
GUO Qi-feng, CAI Mei-feng, WU Xing-hui, XI Xun, MA Ming-hui, ZHANG Jie. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035[J]. Chinese Journal of Engineering, 2022, 44(4): 476-486. doi: 10.13374/j.issn2095-9389.2021.10.22.004
Citation: GUO Qi-feng, CAI Mei-feng, WU Xing-hui, XI Xun, MA Ming-hui, ZHANG Jie. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035[J]. Chinese Journal of Engineering, 2022, 44(4): 476-486. doi: 10.13374/j.issn2095-9389.2021.10.22.004

面向2035年的金屬礦深部多場智能開采發展戰略

doi: 10.13374/j.issn2095-9389.2021.10.22.004
基金項目: 國家自然科學基金資助項目(L1824402)
詳細信息
    通訊作者:

    E-mail: caimeifeng@ustb.edu.cn

  • 中圖分類號: TD801

Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035

More Information
  • 摘要: 深部開采是金屬礦產資源開發的必然趨勢,向地球深部進軍,著力推動采礦行業智能化改造升級,開展深部智能化開采技術研究具有重要的戰略意義。立足國家深地戰略背景,剖析金屬礦深部資源開發對采礦科學技術發展的需求,依托工程技術預見技術方法開展全球技術態勢分析,梳理出本領域關鍵熱點和前沿技術清單,后經專家研判,形成面向2035年的金屬礦深部多場智能開采基礎理論和深部開采環境智能感知、深部開采過程智能作業、深部開采系統智能管控三大類前沿技術。在此基礎上,提出了我國面向2035年的金屬礦深部多場智能開采發展戰略、重點任務、技術路線,包括發展目標與需求、基礎研究方向、關鍵技術裝備等。針對我國金屬礦深部開采技術變革和智能化升級的科技發展路徑,從政策、產業、技術、人才等方面提出了發展和保障建議。

     

  • 圖  1  技術體系圖

    Figure  1.  Technological system

    圖  2  各國文獻收錄情況

    Figure  2.  Literature collection in various countries

    圖  3  各國專利申請情況

    Figure  3.  Patent applications in various countries

    圖  4  文獻詞云熱點

    Figure  4.  Hot word cloud in the literature

    圖  5  專利詞云熱點

    Figure  5.  Hot word cloud in patents

    圖  6  面向2035的技術路線圖

    Figure  6.  Technological roadmap for 2035

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Cai M F, Tan W H, Ren F H. Strategic Research on Innovative Technology System for Deep Mining of Metal Mines. Beijing: Science Press, 2018

    蔡美峰, 譚文輝, 任奮華. 金屬礦深部開采創新技術體系戰略研究. 北京: 科學出版社, 2018
    [2] Xie H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283

    謝和平. 深部巖體力學與開采理論研究進展. 煤炭學報, 2019, 44(5):1283
    [3] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
    [4] Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027
    [5] Holliday C O. Good morning engineers: A wake up call. Engineering, 2016, 2(1): 8 doi: 10.1016/J.ENG.2016.01.002
    [6] Li X B, Wang S F, Wang S Y. Experimental investigation of the influence of confining stress on hard rock fragmentation using a conical pick. Rock Mech Rock Eng, 2018, 51(1): 255 doi: 10.1007/s00603-017-1309-9
    [7] Hallada M R, Walter R F, Seiffert S L. High-power laser rock cutting and drilling in mining operations: Initial feasibility tests. High-Power Laser Ablation III, 2000, 4065: 614
    [8] Kosyrev F K, Rodin A V. Laser destruction and treatment of rocks // 9th International Conference on Advanced Laser Technologies (ALT 01). Constanta, 2002: 4762: 166
    [9] Zhang F P, Peng J Y, Qiu Z G, et al. Rock-like brittle material fragmentation under coupled static stress and spherical charge explosion. Eng Geol, 2017, 220: 266 doi: 10.1016/j.enggeo.2017.02.016
    [10] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
    [11] Wu A X, Li H, Yang L H, et al. Cemented paste backfill paves the way for deep mining. Gold, 2020, 41(9): 51

    吳愛祥, 李紅, 楊柳華, 等. 深地開采, 膏體先行. 黃金, 2020, 41(9):51
    [12] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Metal Mine, 2021(1): 1

    吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1
    [13] Yin S H, Hao S, Zhang H S, et al. Water balance model and cost optimization of waste rock-unclassified pastes slurry. Chin J Nonferrous Met, https://kns.cnki.net/kcms/detail/43.1238.tg.20210831.1433.016.html

    尹升華, 郝碩, 張海勝, 等. 廢石全尾砂充填料漿的水平衡模型及成本尋優. 中國有色金屬學報, https://kns.cnki.net/kcms/detail/43.1238.tg.20210831.1433.016.html
    [14] Sun C Y, Song Z G. Development and application outline of integrated underground mining-processing system. Min Metall, 2017, 26(1): 1 doi: 10.3969/j.issn.1005-7854.2017.01.001

    孫傳堯, 宋振國. 地下采選一體化系統的研究及應用概況. 礦冶, 2017, 26(1):1 doi: 10.3969/j.issn.1005-7854.2017.01.001
    [15] Wu A X, Wang H J, Yin S H, et al. Conception of in situ fluidization mining for deep metal mines. J Min Sci Technol, 2021, 6(3): 255

    吳愛祥, 王洪江, 尹升華, 等. 深層金屬礦原位流態化開采構想. 礦業科學學報, 2021, 6(3):255
    [16] Andrault D, Monteux J, Le Bars M, et al. The deep Earth may not be cooling down. Earth Planet Sci Lett, 2016, 443: 195 doi: 10.1016/j.jpgl.2016.03.020
    [17] Wu X H, Cai M F, Ren F H, et al. Heat exchange cooling technology of high temperature roadway in deep mine. J Central South Univ Sci Technol, 2021, 52(3): 890 doi: 10.11817/j.issn.1672-7207.2021.03.021

    吳星輝, 蔡美峰, 任奮華, 等. 深部礦井高溫巷道熱交換降溫技術探討. 中南大學學報(自然科學版), 2021, 52(3):890 doi: 10.11817/j.issn.1672-7207.2021.03.021
    [18] Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185

    亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185
    [19] Xie H P, Li C B, Gao M Z, et al. Conceptualization and preliminary research on deep in situ rock mechanics. Chin J Rock Mech Eng, 2021, 40(2): 217

    謝和平, 李存寶, 高明忠, 等. 深部原位巖石力學構想與初步探索. 巖石力學與工程學報, 2021, 40(2):217
    [20] Li Y, Fu S S, Qiao L, et al. Development of twin temperature compensation and high-level biaxial pressurization calibration techniques for CSIRO in-situ stress measurement in depth. Rock Mech Rock Eng, 2019, 52(4): 1115 doi: 10.1007/s00603-018-1618-7
    [21] Ge Y F, Xia D, Tang H M, et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning. Chin J Rock Mech Eng, 2017, 36(12): 3050

    葛云峰, 夏丁, 唐輝明, 等. 基于三維激光掃描技術的巖體結構面智能識別與信息提取. 巖石力學與工程學報, 2017, 36(12):3050
    [22] Ge Y F, Zhong P, Tang H M, et al. Intelligent measurement on geometric information of rock discontinuities based on borehole image. Rock Soil Mech, 2019, 40(11): 4467

    葛云峰, 鐘鵬, 唐輝明, 等. 基于鉆孔圖像的巖體結構面幾何信息智能測量. 巖土力學, 2019, 40(11):4467
    [23] Yuan L. Research progress on risk identification, assessment, monitoring and early warning technologies of typical dynamic hazards in coal mines. J China Coal Soc, 2020, 45(5): 1557

    袁亮. 煤礦典型動力災害風險判識及監控預警技術研究進展. 煤炭學報, 2020, 45(5):1557
    [24] Li X, Xu N W. Research developments and prospects on microseismic source location. Prog Geophy, 2020, 35(2): 598 doi: 10.6038/pg2020DD0105

    李翔, 徐奴文. 微震震源定位研究現狀及展望. 地球物理學進展, 2020, 35(2):598 doi: 10.6038/pg2020DD0105
    [25] Chen A G, Gao Y. Developments of research on earthquake detection methods. Prog Geophys, 2019, 34(3): 853 doi: 10.6038/pg2019CC0098

    陳安國, 高原. 微震識別方法研究進展. 地球物理學進展, 2019, 34(3):853 doi: 10.6038/pg2019CC0098
    [26] Li T, Cai M F, Sun L J, et al. Inversion of mining-induced stress field and its application based on focal mechanism solution. Chin J Rock Mech Eng, 2016, 35(9): 1747

    李鐵, 蔡美峰, 孫麗娟, 等. 基于震源機制解的礦井采動應力場反演與應用. 巖石力學與工程學報, 2016, 35(9):1747
    [27] Wang G F, Zhao G R, Ren H W. Analysis on key technologies of intelligent coal mine and intelligent mining. J China Coal Soc, 2019, 44(1): 34

    王國法, 趙國瑞, 任懷偉. 智慧煤礦與智能化開采關鍵核心技術分析. 煤炭學報, 2019, 44(1):34
    [28] Li J L, Yang C Y, Hu Y, et al. Application research of UAV-lidar in detection of underground goaf. Met Mine, 2020(12): 168

    李杰林, 楊承業, 胡遠, 等. 無人機三維激光掃描技術在地下采空區探測中的應用研究. 金屬礦山, 2020(12):168
    [29] Yang B S, Liang F X, Huang R G. Progress, challenges and perspectives of 3D LiDAR point cloud processing. Acta Geod Cartogr Sin, 2017, 46(10): 1509

    楊必勝, 梁福遜, 黃榮剛. 三維激光掃描點云數據處理研究進展、挑戰與趨勢測繪學報, 2017, 46(10): 1509
    [30] Zhang Y S, Zhan K, Ma C Y, et al. Technical architecture and construction ideas of intelligent mine. Nonferrous Met Min Sect, 2020, 72(3): 1

    張元生, 戰凱, 馬朝陽, 等. 智能礦山技術架構與建設思路. 有色金屬(礦山部分), 2020, 72(3):1
    [31] Wang G F, Du Y B. Coal mine intelligent standard system framework and construction ideas. Coal Sci Technol, 2020, 48(1): 1

    王國法, 杜毅博. 煤礦智能化標準體系框架與建設思路. 煤炭科學技術, 2020, 48(1):1
    [32] Liang F M. Intelligent Sensing Theory and Key Technologies of Multi-Parameter Fiber Bragg Grating in Coal Mining [Dissertation]. Beijing: China University of Mining & Technology Beijing, 2019

    梁敏富. 煤礦開采多參量光纖光柵智能感知理論及關鍵技術[學位論文]. 北京: 中國礦業大學(北京), 2019
    [33] Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1

    謝和平. “深部巖體力學與開采理論”研究構想與預期成果展望. 工程科學與技術, 2017, 49(2):1
    [34] Long Z Y, Guo X X. Development and application of full tunnel boring machine. Mine Constr Technol, 2017, 38(5): 7

    龍志陽, 郭孝先. 全斷面掘進機發展和應用. 建井技術, 2017, 38(5):7
    [35] Tan J, Liu Z Q, Song Z Y, et al. Status and development trend of mine shaft sinking technique in China. Met Mine, 2021(5): 13

    譚杰, 劉志強, 宋朝陽, 等. 我國礦山豎井鑿井技術現狀與發展趨勢. 金屬礦山, 2021(5):13
    [36] Li J B. Current status, problems and prospects of research, designng machine in China, and manufacturing of bor. Tunn Constr, 2021, 41(6): 877

    李建斌. 我國掘進機研制現狀、問題和展望. 隧道建設(中英文), 2021, 41(6):877
    [37] Li X B, Huang L Q, Zhou J, et al. Review and prospect of mining technology in hard rock mines. Chin J Nonferrous Met, 2019, 29(9): 1828

    李夕兵, 黃麟淇, 周健, 等. 硬巖礦山開采技術回顧與展望. 中國有色金屬學報, 2019, 29(9):1828
    [38] Wang S F, Li X B, Gong F Q, et al. Breakage characteristics and mechanized mining experiment in deep hard rock. J Central South Univ Sci Technol, 2021, 52(8): 2772

    王少鋒, 李夕兵, 宮鳳強, 等. 深部硬巖截割特性與機械化破巖試驗研究中南大學學報(自然科學版), 2021, 52(8): 2772
    [39] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236

    李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236
    [40] Wang G F, Liu F, Meng X J, et al. Research and practice on intelligent coal mine construction (primary stage). Coal Sci Technol, 2019, 47(8): 1

    王國法, 劉峰, 孟祥軍, 等. 煤礦智能化(初級階段)研究與實踐. 煤炭科學技術, 2019, 47(8):1
    [41] Yang J J, Zhang Q, Wu M, et al. Research progress of autonomous perception and control technology for intelligent heading. J China Coal Soc, 2020, 45(6): 2045

    楊健健, 張強, 吳淼, 等. 巷道智能化掘進的自主感知及調控技術研究進展. 煤炭學報, 2020, 45(6):2045
    [42] Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1

    劉浪, 方治余, 張波, 等. 礦山充填技術的演進歷程與基本類別. 金屬礦山, 2021(3):1
    [43] Qi C C, Yang X Y, Li G C, et al. Research status and perspectives of the application of artificial intelligence in mine backfilling. J China Coal Soc, 2021, 46(2): 688

    齊沖沖, 楊星雨, 李桂臣, 等. 新一代人工智能在礦山充填中的應用綜述與展望. 煤炭學報, 2021, 46(2):688
    [44] Zhou F B, Wei L J, Xia T Q, et al. Principle, key technology and preliminary realization of mine intelligent ventilation. J China Coal Soc, 2020, 45(6): 2225

    周福寶, 魏連江, 夏同強, 等. 礦井智能通風原理、關鍵技術及其初步實現. 煤炭學報, 2020, 45(6):2225
    [45] Zhang Q H, Yao Y H, Zhao J Y. Status of mine ventilation technology in China and prospects for intelligent development. Coal Sci Technol, 2020, 48(2): 97

    張慶華, 姚亞虎, 趙吉玉. 我國礦井通風技術現狀及智能化發展展望. 煤炭科學技術, 2020, 48(2):97
    [46] Yuan L, Yu X, Ding E J, et al. Research on key technologies of human-machine-environment states perception in mine Internet of things. J Commun, 2020, 41(2): 1 doi: 10.11959/j.issn.1000-436x.2020036

    袁亮, 俞嘯, 丁恩杰, 等. 礦山物聯網人-機-環狀態感知關鍵技術研究. 通信學報, 2020, 41(2):1 doi: 10.11959/j.issn.1000-436x.2020036
    [47] Li Y, Wu Z W. Research on time synchronization accuracy method in synchronous Ethernet environment. Comput Netw, 2016, 42(22): 72 doi: 10.3969/j.issn.1008-1739.2016.22.070

    李曄, 伍宗文. 同步以太網環境下時間同步精度方法研究. 計算機與網絡, 2016, 42(22):72 doi: 10.3969/j.issn.1008-1739.2016.22.070
    [48] Ji H, Zhang D, Dai R, et al. High precision time synchronization system designed and implemented for underground mine distributed system. China Min Mag, 2019, 28(Suppl 2): 219

    冀虎, 張達, 戴銳, 等. 一種適用于地下礦山分布式系統的高精度時間同步系統設計及實現. 中國礦業, 2019, 28(增刊2): 219
    [49] Wang G F, Wang H, Ren H W, et al. 2025 scenarios and development path of intelligent coal mine. J China Coal Soc, 2018, 43(2): 295

    王國法, 王虹, 任懷偉, 等. 智慧煤礦2025情景目標和發展路徑. 煤炭學報, 2018, 43(2):295
    [50] Wang L G, Chen X. Advancing technologies for digital mine. Chin J Nonferrous Met, 2016, 26(8): 1693

    王李管, 陳鑫. 數字礦山技術進展. 中國有色金屬學報, 2016, 26(8):1693
    [51] Bi L, Wang J M. Construction target, task and method of digital mine. Met Mine, 2019(6): 148

    畢林, 王晉淼. 數字礦山建設目標、任務與方法. 金屬礦山, 2019(6):148
    [52] Ding E J, Hu Q S. Design ideas of the top layer of the mine Internet of things. Chin J Internet Things, 2018, 2(1): 69 doi: 10.11959/j.issn.2096-3750.2018.00043

    丁恩杰, 胡青松. 礦山物聯網頂層設計思路. 物聯網學報, 2018, 2(1):69 doi: 10.11959/j.issn.2096-3750.2018.00043
    [53] The project team of “Technological strategy research of China Engineering Science and technology towards 2035”. The Development Strategy of China's Engineering Science and Technology for 2035. Beijing: Science Press, 2019

    “中國工程科技2035發展戰略研究”項目組. 中國工程科技2035發展戰略−綜合報告. 北京: 科學出版社, 2019
  • 加載中
圖(6)
計量
  • 文章訪問數:  4064
  • HTML全文瀏覽量:  530
  • PDF下載量:  188
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-22
  • 網絡出版日期:  2022-03-01
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回