[1] |
Cai M F, Tan W H, Ren F H. Strategic Research on Innovative Technology System for Deep Mining of Metal Mines. Beijing: Science Press, 2018蔡美峰, 譚文輝, 任奮華. 金屬礦深部開采創新技術體系戰略研究. 北京: 科學出版社, 2018
|
[2] |
Xie H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283謝和平. 深部巖體力學與開采理論研究進展. 煤炭學報, 2019, 44(5):1283
|
[3] |
Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417蔡美峰, 薛鼎龍, 任奮華. 金屬礦深部開采現狀與發展戰略. 工程科學學報, 2019, 41(4):417
|
[4] |
Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027
|
[5] |
Holliday C O. Good morning engineers: A wake up call. Engineering, 2016, 2(1): 8 doi: 10.1016/J.ENG.2016.01.002
|
[6] |
Li X B, Wang S F, Wang S Y. Experimental investigation of the influence of confining stress on hard rock fragmentation using a conical pick. Rock Mech Rock Eng, 2018, 51(1): 255 doi: 10.1007/s00603-017-1309-9
|
[7] |
Hallada M R, Walter R F, Seiffert S L. High-power laser rock cutting and drilling in mining operations: Initial feasibility tests. High-Power Laser Ablation III, 2000, 4065: 614
|
[8] |
Kosyrev F K, Rodin A V. Laser destruction and treatment of rocks // 9th International Conference on Advanced Laser Technologies (ALT 01). Constanta, 2002: 4762: 166
|
[9] |
Zhang F P, Peng J Y, Qiu Z G, et al. Rock-like brittle material fragmentation under coupled static stress and spherical charge explosion. Eng Geol, 2017, 220: 266 doi: 10.1016/j.enggeo.2017.02.016
|
[10] |
Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517
|
[11] |
Wu A X, Li H, Yang L H, et al. Cemented paste backfill paves the way for deep mining. Gold, 2020, 41(9): 51吳愛祥, 李紅, 楊柳華, 等. 深地開采, 膏體先行. 黃金, 2020, 41(9):51
|
[12] |
Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Metal Mine, 2021(1): 1吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1
|
[13] |
Yin S H, Hao S, Zhang H S, et al. Water balance model and cost optimization of waste rock-unclassified pastes slurry. Chin J Nonferrous Met, https://kns.cnki.net/kcms/detail/43.1238.tg.20210831.1433.016.html尹升華, 郝碩, 張海勝, 等. 廢石全尾砂充填料漿的水平衡模型及成本尋優. 中國有色金屬學報, https://kns.cnki.net/kcms/detail/43.1238.tg.20210831.1433.016.html
|
[14] |
Sun C Y, Song Z G. Development and application outline of integrated underground mining-processing system. Min Metall, 2017, 26(1): 1 doi: 10.3969/j.issn.1005-7854.2017.01.001孫傳堯, 宋振國. 地下采選一體化系統的研究及應用概況. 礦冶, 2017, 26(1):1 doi: 10.3969/j.issn.1005-7854.2017.01.001
|
[15] |
Wu A X, Wang H J, Yin S H, et al. Conception of in situ fluidization mining for deep metal mines. J Min Sci Technol, 2021, 6(3): 255吳愛祥, 王洪江, 尹升華, 等. 深層金屬礦原位流態化開采構想. 礦業科學學報, 2021, 6(3):255
|
[16] |
Andrault D, Monteux J, Le Bars M, et al. The deep Earth may not be cooling down. Earth Planet Sci Lett, 2016, 443: 195 doi: 10.1016/j.jpgl.2016.03.020
|
[17] |
Wu X H, Cai M F, Ren F H, et al. Heat exchange cooling technology of high temperature roadway in deep mine. J Central South Univ Sci Technol, 2021, 52(3): 890 doi: 10.11817/j.issn.1672-7207.2021.03.021吳星輝, 蔡美峰, 任奮華, 等. 深部礦井高溫巷道熱交換降溫技術探討. 中南大學學報(自然科學版), 2021, 52(3):890 doi: 10.11817/j.issn.1672-7207.2021.03.021
|
[18] |
Kang F C, Tang C A. Overview of enhanced geothermal system (EGS) based on excavation in China. Earth Sci Front, 2020, 27(1): 185亢方超, 唐春安. 基于開挖的增強型地熱系統概述. 地學前緣, 2020, 27(1):185
|
[19] |
Xie H P, Li C B, Gao M Z, et al. Conceptualization and preliminary research on deep in situ rock mechanics. Chin J Rock Mech Eng, 2021, 40(2): 217謝和平, 李存寶, 高明忠, 等. 深部原位巖石力學構想與初步探索. 巖石力學與工程學報, 2021, 40(2):217
|
[20] |
Li Y, Fu S S, Qiao L, et al. Development of twin temperature compensation and high-level biaxial pressurization calibration techniques for CSIRO in-situ stress measurement in depth. Rock Mech Rock Eng, 2019, 52(4): 1115 doi: 10.1007/s00603-018-1618-7
|
[21] |
Ge Y F, Xia D, Tang H M, et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning. Chin J Rock Mech Eng, 2017, 36(12): 3050葛云峰, 夏丁, 唐輝明, 等. 基于三維激光掃描技術的巖體結構面智能識別與信息提取. 巖石力學與工程學報, 2017, 36(12):3050
|
[22] |
Ge Y F, Zhong P, Tang H M, et al. Intelligent measurement on geometric information of rock discontinuities based on borehole image. Rock Soil Mech, 2019, 40(11): 4467葛云峰, 鐘鵬, 唐輝明, 等. 基于鉆孔圖像的巖體結構面幾何信息智能測量. 巖土力學, 2019, 40(11):4467
|
[23] |
Yuan L. Research progress on risk identification, assessment, monitoring and early warning technologies of typical dynamic hazards in coal mines. J China Coal Soc, 2020, 45(5): 1557袁亮. 煤礦典型動力災害風險判識及監控預警技術研究進展. 煤炭學報, 2020, 45(5):1557
|
[24] |
Li X, Xu N W. Research developments and prospects on microseismic source location. Prog Geophy, 2020, 35(2): 598 doi: 10.6038/pg2020DD0105李翔, 徐奴文. 微震震源定位研究現狀及展望. 地球物理學進展, 2020, 35(2):598 doi: 10.6038/pg2020DD0105
|
[25] |
Chen A G, Gao Y. Developments of research on earthquake detection methods. Prog Geophys, 2019, 34(3): 853 doi: 10.6038/pg2019CC0098陳安國, 高原. 微震識別方法研究進展. 地球物理學進展, 2019, 34(3):853 doi: 10.6038/pg2019CC0098
|
[26] |
Li T, Cai M F, Sun L J, et al. Inversion of mining-induced stress field and its application based on focal mechanism solution. Chin J Rock Mech Eng, 2016, 35(9): 1747李鐵, 蔡美峰, 孫麗娟, 等. 基于震源機制解的礦井采動應力場反演與應用. 巖石力學與工程學報, 2016, 35(9):1747
|
[27] |
Wang G F, Zhao G R, Ren H W. Analysis on key technologies of intelligent coal mine and intelligent mining. J China Coal Soc, 2019, 44(1): 34王國法, 趙國瑞, 任懷偉. 智慧煤礦與智能化開采關鍵核心技術分析. 煤炭學報, 2019, 44(1):34
|
[28] |
Li J L, Yang C Y, Hu Y, et al. Application research of UAV-lidar in detection of underground goaf. Met Mine, 2020(12): 168李杰林, 楊承業, 胡遠, 等. 無人機三維激光掃描技術在地下采空區探測中的應用研究. 金屬礦山, 2020(12):168
|
[29] |
Yang B S, Liang F X, Huang R G. Progress, challenges and perspectives of 3D LiDAR point cloud processing. Acta Geod Cartogr Sin, 2017, 46(10): 1509楊必勝, 梁福遜, 黃榮剛. 三維激光掃描點云數據處理研究進展、挑戰與趨勢測繪學報, 2017, 46(10): 1509
|
[30] |
Zhang Y S, Zhan K, Ma C Y, et al. Technical architecture and construction ideas of intelligent mine. Nonferrous Met Min Sect, 2020, 72(3): 1張元生, 戰凱, 馬朝陽, 等. 智能礦山技術架構與建設思路. 有色金屬(礦山部分), 2020, 72(3):1
|
[31] |
Wang G F, Du Y B. Coal mine intelligent standard system framework and construction ideas. Coal Sci Technol, 2020, 48(1): 1王國法, 杜毅博. 煤礦智能化標準體系框架與建設思路. 煤炭科學技術, 2020, 48(1):1
|
[32] |
Liang F M. Intelligent Sensing Theory and Key Technologies of Multi-Parameter Fiber Bragg Grating in Coal Mining [Dissertation]. Beijing: China University of Mining & Technology Beijing, 2019梁敏富. 煤礦開采多參量光纖光柵智能感知理論及關鍵技術[學位論文]. 北京: 中國礦業大學(北京), 2019
|
[33] |
Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory. Adv Eng Sci, 2017, 49(2): 1謝和平. “深部巖體力學與開采理論”研究構想與預期成果展望. 工程科學與技術, 2017, 49(2):1
|
[34] |
Long Z Y, Guo X X. Development and application of full tunnel boring machine. Mine Constr Technol, 2017, 38(5): 7龍志陽, 郭孝先. 全斷面掘進機發展和應用. 建井技術, 2017, 38(5):7
|
[35] |
Tan J, Liu Z Q, Song Z Y, et al. Status and development trend of mine shaft sinking technique in China. Met Mine, 2021(5): 13譚杰, 劉志強, 宋朝陽, 等. 我國礦山豎井鑿井技術現狀與發展趨勢. 金屬礦山, 2021(5):13
|
[36] |
Li J B. Current status, problems and prospects of research, designng machine in China, and manufacturing of bor. Tunn Constr, 2021, 41(6): 877李建斌. 我國掘進機研制現狀、問題和展望. 隧道建設(中英文), 2021, 41(6):877
|
[37] |
Li X B, Huang L Q, Zhou J, et al. Review and prospect of mining technology in hard rock mines. Chin J Nonferrous Met, 2019, 29(9): 1828李夕兵, 黃麟淇, 周健, 等. 硬巖礦山開采技術回顧與展望. 中國有色金屬學報, 2019, 29(9):1828
|
[38] |
Wang S F, Li X B, Gong F Q, et al. Breakage characteristics and mechanized mining experiment in deep hard rock. J Central South Univ Sci Technol, 2021, 52(8): 2772王少鋒, 李夕兵, 宮鳳強, 等. 深部硬巖截割特性與機械化破巖試驗研究中南大學學報(自然科學版), 2021, 52(8): 2772
|
[39] |
Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236李夕兵, 周健, 王少鋒, 等. 深部固體資源開采評述與探索. 中國有色金屬學報, 2017, 27(6):1236
|
[40] |
Wang G F, Liu F, Meng X J, et al. Research and practice on intelligent coal mine construction (primary stage). Coal Sci Technol, 2019, 47(8): 1王國法, 劉峰, 孟祥軍, 等. 煤礦智能化(初級階段)研究與實踐. 煤炭科學技術, 2019, 47(8):1
|
[41] |
Yang J J, Zhang Q, Wu M, et al. Research progress of autonomous perception and control technology for intelligent heading. J China Coal Soc, 2020, 45(6): 2045楊健健, 張強, 吳淼, 等. 巷道智能化掘進的自主感知及調控技術研究進展. 煤炭學報, 2020, 45(6):2045
|
[42] |
Liu L, Fang Z Y, Zhang B, et al. Development history and basic categories of mine backfill technology. Met Mine, 2021(3): 1劉浪, 方治余, 張波, 等. 礦山充填技術的演進歷程與基本類別. 金屬礦山, 2021(3):1
|
[43] |
Qi C C, Yang X Y, Li G C, et al. Research status and perspectives of the application of artificial intelligence in mine backfilling. J China Coal Soc, 2021, 46(2): 688齊沖沖, 楊星雨, 李桂臣, 等. 新一代人工智能在礦山充填中的應用綜述與展望. 煤炭學報, 2021, 46(2):688
|
[44] |
Zhou F B, Wei L J, Xia T Q, et al. Principle, key technology and preliminary realization of mine intelligent ventilation. J China Coal Soc, 2020, 45(6): 2225周福寶, 魏連江, 夏同強, 等. 礦井智能通風原理、關鍵技術及其初步實現. 煤炭學報, 2020, 45(6):2225
|
[45] |
Zhang Q H, Yao Y H, Zhao J Y. Status of mine ventilation technology in China and prospects for intelligent development. Coal Sci Technol, 2020, 48(2): 97張慶華, 姚亞虎, 趙吉玉. 我國礦井通風技術現狀及智能化發展展望. 煤炭科學技術, 2020, 48(2):97
|
[46] |
Yuan L, Yu X, Ding E J, et al. Research on key technologies of human-machine-environment states perception in mine Internet of things. J Commun, 2020, 41(2): 1 doi: 10.11959/j.issn.1000-436x.2020036袁亮, 俞嘯, 丁恩杰, 等. 礦山物聯網人-機-環狀態感知關鍵技術研究. 通信學報, 2020, 41(2):1 doi: 10.11959/j.issn.1000-436x.2020036
|
[47] |
Li Y, Wu Z W. Research on time synchronization accuracy method in synchronous Ethernet environment. Comput Netw, 2016, 42(22): 72 doi: 10.3969/j.issn.1008-1739.2016.22.070李曄, 伍宗文. 同步以太網環境下時間同步精度方法研究. 計算機與網絡, 2016, 42(22):72 doi: 10.3969/j.issn.1008-1739.2016.22.070
|
[48] |
Ji H, Zhang D, Dai R, et al. High precision time synchronization system designed and implemented for underground mine distributed system. China Min Mag, 2019, 28(Suppl 2): 219冀虎, 張達, 戴銳, 等. 一種適用于地下礦山分布式系統的高精度時間同步系統設計及實現. 中國礦業, 2019, 28(增刊2): 219
|
[49] |
Wang G F, Wang H, Ren H W, et al. 2025 scenarios and development path of intelligent coal mine. J China Coal Soc, 2018, 43(2): 295王國法, 王虹, 任懷偉, 等. 智慧煤礦2025情景目標和發展路徑. 煤炭學報, 2018, 43(2):295
|
[50] |
Wang L G, Chen X. Advancing technologies for digital mine. Chin J Nonferrous Met, 2016, 26(8): 1693王李管, 陳鑫. 數字礦山技術進展. 中國有色金屬學報, 2016, 26(8):1693
|
[51] |
Bi L, Wang J M. Construction target, task and method of digital mine. Met Mine, 2019(6): 148畢林, 王晉淼. 數字礦山建設目標、任務與方法. 金屬礦山, 2019(6):148
|
[52] |
Ding E J, Hu Q S. Design ideas of the top layer of the mine Internet of things. Chin J Internet Things, 2018, 2(1): 69 doi: 10.11959/j.issn.2096-3750.2018.00043丁恩杰, 胡青松. 礦山物聯網頂層設計思路. 物聯網學報, 2018, 2(1):69 doi: 10.11959/j.issn.2096-3750.2018.00043
|
[53] |
The project team of “Technological strategy research of China Engineering Science and technology towards 2035”. The Development Strategy of China's Engineering Science and Technology for 2035. Beijing: Science Press, 2019“中國工程科技2035發展戰略研究”項目組. 中國工程科技2035發展戰略−綜合報告. 北京: 科學出版社, 2019
|