-
摘要: 自1989年第一條產線投產以來,薄板坯連鑄連軋技術已經走過30多年的發展歷程。在這個過程中,通過對其技術不斷探索和創新,推動了薄板坯連鑄連軋技術不斷向前發展。在鋼鐵工業碳中和戰略目標背景下,以薄板坯連鑄連軋為代表的近終形制造技術得到了行業的極大關注。本文主要回顧了薄板坯連鑄連軋技術的發展,分析其關鍵工藝裝備的演變歷程,并根據其連續化程度將薄板坯連鑄連軋劃分為單坯、半無頭和無頭三代技術;分析了薄板坯連鑄連軋流程的工藝特點及物理冶金特征,在此基礎上提出了其產品定位,重點介紹了其代表性產品如中高碳鋼、熱軋高強鋼及電工鋼等的開發與應用現狀。最后,對薄板坯連鑄連軋技術未來的發展進行了展望,提出連續化、專業化、智能化將是未來重要發展方向。Abstract: Thin slab casting and direct rolling (TSCR) technology has experienced 30 years of development since the first production line was commissioned in 1989. Owing to consistent and successful exploration and innovation by engineers and researchers, rapid progress in TSCR technology has been witnessed. Under the background of carbon neutrality, the steel industry encounters tremendous pressure for low carbon emissions. As one of the representative near-net-shape steel manufacturing technologies, TSCR technology has attracted extensive attention. This article reviewed the development history and evolution of critical process equipment for the TSCR technology. According to the continuous extent of the manufacturing process, the TSCR technology can be classified into the following three generations, i.e., batch rolling, semiendless rolling, and endless rolling. With the improvement of the continuity of TSCR technology, the production line is greatly shortened, especially the third-generation technology, the endless strip production line. Meanwhile, the increase in continuity substantially increases productivity, production yield, and energy efficiency and expands the thinnest strip thickness down to 0.6 mm. Additionally, the specific characteristics of processing and physical metallurgy of TSCR technology were analyzed. Based on its characteristics of rapid solidification, heavy reduction per rolling pass, and uniform temperature distribution, TSCR technology was suggested to produce special steel, high strength steel, silicon steel, and thin gauge products. New advances on the development of representative products for TSCR technology, e.g., medium- and high-carbon steels, high-strength hot-rolled steels, and silicon steels, and their practical application status were discussed. Finally, this work envisaged the future development directions of TSCR technology and proposed that making the process more concise and continuous, developing product-oriented production lines, and coupling intelligent manufacturing with TSCR technology will be important development directions in the future.
-
圖 8 不同加熱溫度和加熱時間對高碳鋼SK85脫碳層厚度的影響。(a)脫碳層厚度隨加熱溫度的變化;(b)脫碳層厚度隨加熱時間的變化
Figure 8. Influence of the heating temperature and durations on the decarburization layer thickness of high-carbon steel SK85: (a) the evolution of decarburization layer thickness with the variations of heating temperate; (b) the evolution of decarburization layer thickness with the variations of heating durations
表 1 全球已建薄板坯連鑄連軋產線
Table 1. Thin slab casting and direct rolling production lines in the word
Country Number of production lines Annual productive capacity/(106 t) CSP ISP FTSR QSP CONROLL TSP ESP ASP Total China 7 — 3 — — — 9 4 32 54.57 USA 9 — — 2 1 5 — — 17 29.70 India 4 — — — — — — — 4 11.40 Italy 2 1 — — — — 1 — 4 4.30 South Korea 1 1 1 — — — 1 — 4 8.60 Others 11 1 5 1 3 21 28.8 Total 34 3 9 3 4 5 11 4 73 137.37 表 2 中國已建薄板坯連鑄連軋產線
Table 2. Thin slab casting and direct rolling production lines in China
Name of company Technology Slab thickness/
mmProducts thickness/
mmAnnual production capacity/
(104 t)Put into production
timeZhujiang Steel CSP 50–60 1.2–12.7 180 1999.8 Handan Iron &Steel Group CSP 60–90 1.2–12.7 250 1999.12 Baotou Steel CSP 50–70 1.2–12.0 200 2001.8 Anshan Steel ASP 100–135 1.5–25.0 240 2000.7 Anshan Steel ASP 135–170 1.5–25.0 500 2005 Maanshan Iron &Steel Group CSP 50–90 0.8–12.7 200 2003.9 HBIS Group Tangsteel Company FTSR 70–90 0.8–12.0 250 2002.1 Valin LY Steel CSP 55–70 0.8–12.7 240 2004.2 Bensteel Group FTSR 70–85 0.8–12.7 280 2004.11 Tonggang Limited Company FTSR 70–90 1.0–12.0 250 2005.12 Jigang Group ASP 135–150 1.5–25.0 250 2006.11 Jiuquan Iron & Steel CSP 52–70 1.2–12.7 200 2005.5 Wuhan Iron &Steel Group CSP 50–90 1.0–12.7 253 2009.2 Anshan Steel ASP 100–135 0.8–12.7 200 2010.11 Rizhao Steel ESP 70–110 0.8–6.0 222 2014.11 Rizhao Steel ESP 70–110 0.8–6.0 222 2015.5 Rizhao Steel ESP 70–110 0.8–6.0 222 2015.9 Rizhao Steel ESP 70–110 0.6–6.0 222 2018.3 Shougang Jingtang Iron & Steel United MCCR 110/123 0.8–12.7 210 2019.4 Tangshan Quanfeng DSCCR 70–100 0.8–4.5 200 2019.6 Rizhao Steel ESP 70–110 0.6–6.0 222 2021.2 Fujian Dingsheng Steel ESP 70–110 0.8–6.0 222 2021 Taihang Steel ESP 70–110 0.8–6.0 222 2021 Total 5457 表 3 薄板坯連鑄連軋三代技術的技術特征
Table 3. Technical features in the three generations of TSCR technology
Generation Representative characteristics Slab thickness/mm Mass flow (width: 1300 mm)/ (t·min?1) Types of heating furnace Number of rolling mills 1st generation Batch rolling 50–70 3–3.5 ~200 m roller hearth reheating furnace 5–7 2nd generation Semiendless 60–90 3.5–4.5 200–315 m roller hearth reheating furnace 7 3rd generation Endless rolling 80–120 5.0–6.5 ~10 m electromagnetic induction heating; 80 m roller hearth reheating furnace + 10 m electromagnetic induction heating 8 Generation Speed schedule Length of the continuous rolling process Smallest thickness of the product/mm Ratio of thin product Length of the production line/m 1st generation Constant Short, 1 coil 1.2 Low 170–360 2nd generation Speed-up Medium, 4–7 coils 0.8 Medium 390–480 3rd generation Constant-mass flow Long, 1 rolling cycle 0.6 High 170–290 表 4 兩種流程生產典型中高碳鋼脫碳層深度比較
Table 4. Comparison of the decarburization layer thickness of medium- and high-carbon steel produced by the TSCR process and conventional steel manufacturing processes
Steel grade Strip thickness/mm Decarburization layer thickness/μm Products of TSCR Products of conventional process Products of TSCR Products of conventional process SK95 5.00 5.00 16.67 38.50 4.00 3.00 10.50 31.00 SK85 5.00 5.00 16.67 60.60 4.00 4.00 10.50 30.12 www.77susu.com -
參考文獻
[1] Yin R Y, Zhang H. Progress and development direction on thin slab continuous casting and rolling technology under new situation. Iron Steel, 2011, 46(4): 1殷瑞鈺, 張慧. 新形勢下薄板坯連鑄連軋技術的進步與發展方向. 鋼鐵, 2011, 46(4):1 [2] Xu K D. Speech on closing ceremony of first symposium of 《exchange and development association of thin slab casting and continuous rolling》. Iron Steel, 2003, 38(7): 1 doi: 10.3321/j.issn:0449-749X.2003.07.001徐匡迪. 在《薄板坯連鑄連軋技術交流與開發協會第一次交流大會》閉幕式的講話. 鋼鐵, 2003, 38(7):1 doi: 10.3321/j.issn:0449-749X.2003.07.001 [3] Piemonte C P, Pigani A. DANIELI concepts and experiences in thin slab casting and rolling technology for HRC production. World Iron Steel, 2011, 11(3): 42 doi: 10.3969/j.issn.1672-9587.2011.03.010Piemonte Carlo P, Pigani Alessandro. 達涅利生產熱軋鋼卷的薄板坯連鑄連軋技術的觀點和經驗. 世界鋼鐵, 2011, 11(3):42 doi: 10.3969/j.issn.1672-9587.2011.03.010 [4] Liu J. Engineering and production practice of angang’s 1700 mm medium thickness slab continuous casting-rolling line (aspangang strip production). Iron Steel, 2003, 38(7): 8 doi: 10.3321/j.issn:0449-749X.2003.07.003劉玠. 鞍鋼1700中薄板坯連鑄連軋生產線(ASP)工程與生產實踐. 鋼鐵, 2003, 38(7):8 doi: 10.3321/j.issn:0449-749X.2003.07.003 [5] Arvedi G, Mazzolari F, Siegl J, et al. Arvedi ESP first thin slab endless casting and rolling results. Ironmak Steelmak, 2010, 37(4): 271 doi: 10.1179/030192310X12646889255744 [6] Lee J S, Kang Y H, Won C S, et al. Development of a new solid-state joining process for endless hot rolling. Iron Steel Technol, 2009, 6(8): 48 [7] Rohde W, Flemming G. Current state, capabilities and further developments of the CSP technology. Metall Plant Technol Int, 1995, 18(4): 10 [8] Tian N Y, Tang H H, Song L D. Latest development in thin slab casting and rolling technology. Iron Steel, 2001, 36(5): 69 doi: 10.3321/j.issn:0449-749X.2001.05.019田乃媛, 唐洪華, 宋立東. 薄板坯連鑄連軋技術的最新進展. 鋼鐵, 2001, 36(5):69 doi: 10.3321/j.issn:0449-749X.2001.05.019 [9] Xuan S R. Present situation and developing tendency of thin slab continuous casting-continuous rolling technology. Baosteel Meishan, 2006(3): 36宣守蓉. 薄板坯連鑄連軋技術的現狀及發展趨勢. 梅山科技, 2006(3):36 [10] Streubel H. Thin-slab casting with liquid core reduction. Metall Plant Technol Int, 1999, 22(3): 62 [11] Yang C Z, Zhang H B, Yang J, et al. Application and improvement of dynamic liquid core reduction technology in thin slab continuous casting-continuous rolling. Iron Steel, 2004(Supple 1): 468楊春政, 張洪波, 楊杰, 等. 薄板坯連鑄動態液芯壓下技術的應用與完善. 鋼鐵, 2004(增刊1): 468 [12] Bilgen C, Klein C, Klinkenberg C, et al. From CSP? to CSP? flex: the new concept for thin slab technology. Millennium Steel, 2012, 131(11): 90 [13] Mao X P. Near Net Shape Manufacturing Technology of Hot-Rolled Strip. Beijing: Metallurgical Industry Press, 2020毛新平. 熱軋板帶近終形制造技術. 北京: 北京冶金工業出版社, 2020 [14] Zhao M X. ISP process of thin slab continuous casting-continuous rolling. Hunan Metall, 1994, 22(6): 55趙明修. 薄板坯連鑄連軋ISP工藝. 湖南冶金, 1994, 22(6):55 [15] Jian R X, Hao W H. Arvedi’s endless strip production line (ESP)— conversion of molten steel to hot rolled coil in 7 minutes. Taigang Translation, 2009(4): 29菅瑞雄, 郝偉紅. Arvedi公司的無頭帶鋼生產線(ESP)——7分鐘內鋼水轉變為熱軋卷. 太鋼譯文, 2009(4):29 [16] Reip C P, Henning W, Kempken J, et al. Challenges and Solutions faced by CSP. World Iron Steel, 2008, 8(2): 1Reip C P, Henning W, Kempken J, 等. CSP面臨的挑戰及解決方案. 世界鋼鐵, 2008, 8(2):1 [17] Xiao P, Cui X J, Xu L, et al. Discussion about high-precision rolling of sheet-strip steel. Hebei Metall, 2012(2): 46 doi: 10.3969/j.issn.1006-5008.2012.02.014肖鵬, 崔曉嘉, 徐良, 等. 淺談板帶鋼的高精度軋制技術. 河北冶金, 2012(2):46 doi: 10.3969/j.issn.1006-5008.2012.02.014 [18] Kang Y L, Zhu G M. Hot strip endless rolling technology. Iron Steel, 2012, 47(2): 1康永林, 朱國明. 熱軋板帶無頭軋制技術. 鋼鐵, 2012, 47(2):1 [19] Liu X H, Cheng X J, Wu H H, et al. Research and application on semi-endless rolling technique on CSP line. Met Mater Metall Eng, 2012, 40(2): 17 doi: 10.3969/j.issn.1005-6084.2012.02.004劉旭輝, 成小軍, 吳浩鴻, 等. CSP生產線半無頭軋制技術研究與應用. 金屬材料與冶金工程, 2012, 40(2):17 doi: 10.3969/j.issn.1005-6084.2012.02.004 [20] Zheng X T. Endless Strip Production Technology in Rizhao Steel Company. Metall Equip, 2016, 225: 44 doi: 10.3969/j.issn.1001-1269.2016.06.010鄭旭濤. 日鋼ESP無頭軋制技術. 冶金設備, 2016, 225:44 doi: 10.3969/j.issn.1001-1269.2016.06.010 [21] Yao Y, Zheng X T. Endless strip production technology in Rizhao Steel Company. Continuous Casting, 2016, 41(5): 1 [22] Kang Y L, Fu J, Mao X P. Comprehensive control theory on microstructure and properties of steel products of thin slab casting and rolling and its application. Iron Steel, 2005, 40(7): 41 doi: 10.3321/j.issn:0449-749X.2005.07.010康永林, 傅杰, 毛新平. 薄板坯連鑄連軋鋼的組織性能綜合控制理論及應用. 鋼鐵, 2005, 40(7):41 doi: 10.3321/j.issn:0449-749X.2005.07.010 [23] Mao X P, Gao J X, Chai Y Z. Development of thin slab casting and direct rolling process in China. Iron Steel, 2014, 49(7): 49毛新平, 高吉祥, 柴毅忠. 中國薄板坯連鑄連軋技術的發展. 鋼鐵, 2014, 49(7):49 [24] Zhou T, O’Malley R J, Zurob H S, et al. Control of upstream austenite grain coarsening during the thin-slab cast direct-rolling (TSCDR) process. Metals, 2019, 9: 158 doi: 10.3390/met9020158 [25] Zapuskalov N. Comparison of continuous strip casting with conventional technology. ISIJ Int, 2003, 43(8): 1115 doi: 10.2355/isijinternational.43.1115 [26] Kaspar R. Microstructural aspects and optimization of thin slab direct rolling of steels. Steel Res Int, 2003, 74(5): 318 doi: 10.1002/srin.200300193 [27] Yang X J, Yang C Z, Zhang H B, et al. The thin slab quality produced by FTSC caster. Continuous Cast, 2006, 31(5): 19 doi: 10.3969/j.issn.1005-4006.2006.05.008楊曉江, 楊春政, 張洪波, 等. FTSC連鑄薄板坯的質量. 連鑄, 2006, 31(5):19 doi: 10.3969/j.issn.1005-4006.2006.05.008 [28] Li Y, Crowther D N, Mitchell P S, et al. The evolution of microstructure during thin slab direct rolling processing in vanadium microalloyed steels. ISIJ Int, 2002, 42(6): 636 doi: 10.2355/isijinternational.42.636 [29] Kang Y L, Yu H, Fu J, et al. Morphology and precipitation kinetics of AlN in hot strip of low carbon steel produced by compact strip production. Mater Sci Eng A, 2003, 351(1-2): 265 doi: 10.1016/S0921-5093(02)00845-6 [30] Kang Y L, Fu J. Approach on products development of thin slab casting and rolling. China Metall, 2004, 14(6): 8 doi: 10.3969/j.issn.1006-9356.2004.06.002康永林, 傅杰. 關于薄板坯連鑄連軋產品開發問題的探討. 中國冶金, 2004, 14(6):8 doi: 10.3969/j.issn.1006-9356.2004.06.002 [31] Zhang Y H, Zhao H J, Kang Y L. Review on the research progress of tscr process. Shanghai Met, 2006, 28(5): 51 doi: 10.3969/j.issn.1001-7208.2006.05.012張迎暉, 趙鴻金, 康永林. 薄板坯連鑄連軋工藝的研究進展. 上海金屬, 2006, 28(5):51 doi: 10.3969/j.issn.1001-7208.2006.05.012 [32] Xiong T. Analysis of Oxidation and Decarburization Mechanism on SK85 Steel Produced by CSP [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2017熊韜. CSP生產SK85鋼的氧化及脫碳機理研究[學位論文]. 武漢: 武漢科技大學, 2017 [33] Wang X, Kang Y L, Yu H, et al. Microstructure and properties of low carbon steel plate produced by FTSR and traditional technology. Heat Treat Met, 2006, 31(12): 46 doi: 10.3969/j.issn.0254-6051.2006.12.013王欣, 康永林, 于浩, 等. FTSR與傳統工藝生產熱軋低碳鋼板的組織與性能. 金屬熱處理, 2006, 31(12):46 doi: 10.3969/j.issn.0254-6051.2006.12.013 [34] Kang Y L, Yu H, Wang K L, et al. Study of microstructure evolution and strengthening mechanism of low carbon steel produced by csp line. Iron Steel, 2003, 38(8): 20 doi: 10.3321/j.issn:0449-749X.2003.08.004康永林, 于浩, 王克魯, 等. CSP低碳鋼薄板組織演變及強化機理研究. 鋼鐵, 2003, 38(8):20 doi: 10.3321/j.issn:0449-749X.2003.08.004 [35] Hoen K, Klein C, Kr?mer S, et al. Recent development of thin slab casting and rolling technology in a challenging market. BHM Berg Und Hüttenm? nnische Monatshefte, 2016, 161(9): 415 [36] Klinkenberg C, Kintscher B, Hoen K, et al. More than 25 years of experience in thin slab casting and rolling current state of the art and future developments. Steel Res Int, 2017, 88(10): 1700272 doi: 10.1002/srin.201700272 [37] Klinkenberg C, Bilgen C, Rodriguez-Ibabe J M, et al. New trends and technologies in thin-slab direct rolling: Improved microstructure & mechanical behavior. Mater Sci Forum, 2012, 706-709: 2752 doi: 10.4028/www.scientific.net/MSF.706-709.2752 [38] Sam S, Kant N, Hazra S S. Development of API 5L X70 grade steel through thin slab casting and rolling process // Proceedings of ASME 2019 India Oil and Gas Pipeline Conference. New Delhi, 2019: V001T01A004.1 [39] Klinkenberg C, Bilgen C, Boecher T, et al. 20 years of experience in thin slab casting and rolling state of the art and future developments. Mater Sci Forum, 2010, 638-642: 3610 doi: 10.4028/www.scientific.net/MSF.638-642.3610 [40] Muntin A V. Advanced technology of combined thin slab continuous casting and steel strip hot rolling. Metallurgist, 2019, 62(9-10): 900 doi: 10.1007/s11015-019-00747-5 [41] Zhou T H, Zhang P, Kuuskman K, et al. Development of medium-to-high carbon hot-rolled steel strip on a thin slab casting direct strip production complex. Ironmak Steelmak, 2018, 45(7): 603 doi: 10.1080/03019233.2017.1306953 [42] Shen X L. Key Technology Research of High-Medium Carbon Steel Produced by TSCR [Dissertation]. Guangzhou: South China University of Technology, 2013沈訓良. 薄板坯連鑄連軋中高碳鋼制造關鍵技術研究[學位論文]. 廣州: 華南理工大學, 2013 [43] Mao X P, Chen Q L, Li C Y. Manufacturing technique of high-medium carbon steel for thin slab casting and direct rolling process. Iron Steel, 2012, 47(4): 93毛新平, 陳麒琳, 李春艷. 薄板坯連鑄連軋中高碳鋼生產技術. 鋼鐵, 2012, 47(4):93 [44] Mao X P, Chen Q L, Li C Y. High carbon steel production technology of Zhujiang Steel's thin slab continuous casting and rolling // Proceedings of the 3rd Sino-German (Europe) Metallurgical Technology Symposium. Beijing, 2011: 215毛新平, 陳麒琳, 李春艷. 珠鋼薄板坯連鑄連軋高碳鋼生產技術 // 第三屆中德(歐)冶金技術研討會論文集. 北京, 2011: 215 [45] Tan W, Han B, Cai Z, et al. Research and development of high performance high carbon steel strip on CSP line of WISCO. Steel Roll, 2017, 34(6): 10譚文, 韓斌, 蔡珍, 等. 武鋼CSP短流程優質中高碳鋼的開發及應用. 軋鋼, 2017, 34(6):10 [46] Huang H H, Yang G W, Zhao G, et al. Microstructure and mechanical properties of heat-treated 30CrMo steels produced by compact strip production and conventional rolling processes. Metallogr Microstruct Anal, 2018, 7(1): 26 doi: 10.1007/s13632-017-0409-y [47] Bald W, Kneppe G, Rosenthal D, et al. Innovative technologies for strip production. Steel Times Int, 2000, 24(5): 16 [48] Lubensky P J, Liu Y C. Direct rolling of high-strength steel with thin slab continuous casting and rolling technology. Iron Steel Translation Collect, 2003(1): 16Lubensky P J, 劉友存. 用薄板坯技術直接軋制高強度鋼. 鋼鐵譯文集, 2003(1):16 [49] Reip C P, Shanmugam S, Misra R D K. High strength microalloyed CMn(V-Nb-Ti) and CMn(V-Nb) pipeline steels processed through CSP thin-slab technology: Microstructure, precipitation and mechanical properties. Mater Sci Eng A, 2006, 424(1-2): 307 doi: 10.1016/j.msea.2006.03.026 [50] Mao X P, Chen Q L, Zhu D Y. Recent development of microalloying technology in thin slab casting and rolling process. Iron Steel, 2008, 43(4): 1 doi: 10.3321/j.issn:0449-749X.2008.04.001毛新平, 陳麒琳, 朱達炎. 薄板坯連鑄連軋微合金化技術發展現狀. 鋼鐵, 2008, 43(4):1 doi: 10.3321/j.issn:0449-749X.2008.04.001 [51] Mao X P, Sun X J, Wang S Z. Control rolling technology of Ti-microalloyed strip produced by TSCR. Iron Steel, 2016, 51(1): 52毛新平, 孫新軍, 汪水澤. 薄板坯連鑄連軋流程鈦微合金鋼控制軋制技術. 鋼鐵, 2016, 51(1):52 [52] Gao J X. Study on Microstructure and Properties of Ultra High-Strength Weathering Steel Produced by TSCR [Dissertation]. Guangzhou: South China University of Technology, 2012高吉祥. 薄板坯連鑄連軋超高強耐候鋼的組織性能研究[學位論文]. 廣州: 華南理工大學, 2012 [53] Cai Z, Wang S Z, Xu J Q, et al. Present situation and development trend of dual-phase steel produced in TSCR line. Steel Roll, 2018, 35(2): 59蔡珍, 汪水澤, 徐進橋, 等. 短流程熱軋雙相鋼的生產現狀及發展趨勢. 軋鋼, 2018, 35(2):59 [54] Chen Y, Ge R, Zhu H C, et al. 1500 MPa-grade Low-hydrogen Induced Delay Cracking Sensitive Thermoforming Steel and Production Method: China Patent, 201910423900. 2019-08-02陳勇, 葛銳, 祝洪川, 等. 一種1500 MPa級低氫致延遲開裂敏感性熱成形鋼及生產方法: 中國專利, 201910423900. 2019-08-02 [55] Wang X Y, Liu X H. Current state and advantages on developing electrical steels in CSP process. China Metall, 2005, 15(12): 39 doi: 10.3969/j.issn.1006-9356.2005.12.012王小燕, 劉學華. CSP工藝開發電工鋼的現狀及其優勢. 中國冶金, 2005, 15(12):39 doi: 10.3969/j.issn.1006-9356.2005.12.012 [56] Wang S Z, Li C S, Wang T P, et al. Development and future of non-oriented silicon steel manufactured by thin slab casting and rolling technology. J Iron Steel Res, 2008, 20(9): 1汪水澤, 李長生, 王廷溥, 等. 薄板坯連鑄連軋生產無取向硅鋼技術的發展及前景. 鋼鐵研究學報, 2008, 20(9):1 [57] Kang Y L. Analysis of production situation of thin slab continuous casting and rolling in China and some suggestions for its development. Steel Roll, 2006, 23(6): 40 doi: 10.3969/j.issn.1003-9996.2006.06.013康永林. 我國薄板坯連鑄連軋生產現狀分析與建議. 軋鋼, 2006, 23(6):40 doi: 10.3969/j.issn.1003-9996.2006.06.013 [58] Xiang L, Cheng S L, Pei Y H, et al. Domestic current status and research progress of producing electrical steel by thin slab casting and rolling process // Proceedings of the 11th CMS Steel Congress. Beijing, 2017: 69項利, 陳圣林, 裴英豪, 等. 國內薄板坯連鑄連軋生產電工鋼的現狀及研究進展//第十一屆中國鋼鐵年會論文集. 北京, 2017: 69 [59] Luo Z H, Qiu S T, Chen S L. Technical development and application of thin slab continuous casting and rolling production of electrical steel (oriented and non-oriented). Continuous Cast, 2017, 42(4): 42駱忠漢, 仇圣桃, 陳圣林. 薄板坯連鑄連軋生產電工鋼(取向及無取向)的技術開發及應用. 連鑄, 2017, 42(4):42 -