Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts
-
摘要: 基于Rh在廢均相催化劑中的賦存狀態,研發出綠色解離Rh–P化學鍵及Rh的絡合浸出新技術,實現了Rh的綠色高效浸出,杜絕了傳統廢均相催化劑焚燒–碎化–酸浸工藝流程長、污染嚴重、回收率低等問題。首先通過蒸餾將低熔點有機物去除,然后采用H2O2將均相銠膦絡合物中的Rh+氧化成Rh3+,減少有機配體對Rh的束縛;同時Rh3+與Cl–絡合形成水溶性的RhCl63–進入溶液中。研究了蒸餾溫度、Cl–濃度、H2O2用量、H+濃度、反應時間等對Rh的回收率影響,并采用響應曲面法優化了Cl–濃度、H2O2用量和反應時間等工藝參數。結果表明:各參數對Rh回收率的影響大小為:H2O2用量>Cl–濃度>反應時間,優化的工藝參數為:蒸餾溫度260 ℃、Cl–濃度3.0 mol?L–1、H2O2用量為廢均相催化劑的37%(體積分數)、H+濃度1.0 mol?L–1、反應時間4.5 h,Rh的回收率達到98.22%。最后,采用分光光度法研究了Rh的氧化–絡合動力學行為,表明該反應的活化能為39.24 kJ?mol–1,屬于化學反應控速。Abstract: Rhodium-containing homogeneous catalysts are the most active catalysts for homogeneous hydrogenation. Spent homogeneous catalysts contain 100–2000 g?t–1 of rhodium (Rh) and plenty of hazardous organic components, making them an essential resource of Rh. The recovery of Rh from homogeneous catalysts has excellent economic and environmental benefits. Based on Rh in the spent homogeneous catalysts, a new technology for green dissociation of the Rh–P chemical bond and complexation leaching of Rh was developed, allowing the green and efficient recovery of Rh. Compared with traditional incineration-fragmentation and acid leaching methods, the proposed technology eliminated issues such as long process times, severe environmental pollution, and a low recovery rate of Rh. In this study, first, the low-melting-point organics were removed using distillation. Then, the Rh+ in the homogeneous rhodium–phosphine complex was oxidized as Rh3+ through H2O2, which reduced the binding of organic ligands to Rh. Meanwhile, the RhCl63? formed by Rh3+ and Cl– dissolved into the aqueous solution. The effects of distillation temperature, the concentration of Cl–, the dosage of H2O2, the concentration of H+, and reaction time on the recovery efficiency of Rh were studied. The parameters listed above were optimized using response surface methodology. The results showed that the influence of each parameter on the recovery efficiency of Rh was as follows: H2O2 dosage > Cl– concentration > reaction time. The recovery efficiency of Rh reached 98.22% after 4 h of distillation at 260 °C, leaching Rh in the mixture solution of 3.0 mol?L–1 Cl–, 37% (volume fraction) of the spent homogeneous catalyst dosage of H2O2, 1.0 mol?L–1 H+, and at 90 °C for 4.5 h. Finally, the oxidation–complexation kinetic behavior of Rh was studied using spectrophotometry. The activation energy of the leaching reaction was 39.24 kJ?mol–1, indicating that the rate-controlling step of this process was a surface chemical reaction.
-
Key words:
- rhodium /
- spent homogeneous catalysts /
- distillation /
- response surface method /
- kinetics
-
表 1 Rh氧化浸出回歸方程的方差分析
Table 1. ANOVA results of the reduced quadratic model for the Rh leaching efficiency
Source Sum of squares Mean square F value p-value Prob>F Model 10550.87 1172.32 12.38 0.0003 A 3690.05 3690.05 38.97 < 0.0001 B 2460.03 2460.03 25.98 0.0005 C 341.94 341.94 3.61 0.0866 AB 5.41 5.41 0.057 0.8159 AC 484.85 484.85 5.12 0.0471 BC 307.27 307.27 3.25 0.1018 A2 2254.83 2254.83 23.82 0.0006 B2 410.16 410.16 4.33 0.0641 C2 1121.33 1121.33 11.84 0.0063 Residual 946.80 94.68 — — Lack of fit 941.00 188.20 162.32 < 0.0001 Pure error 5.80 1.16 — — Cor total 11497.66 — — — 表 2 響應曲面模型的相關性分析
Table 2. Correlation analysis of response surface method
Category Value Category Value Standard deviation 9.73 R2 0.9177 Mean 63.47 Radj2 0.8435 Coefficient of fariance 15.33 Pred R2 0.3791 PRESS 7139.13 Adeq precision 10.702 表 3 不同溫度下Rh氧化絡合浸出動力學參數
Table 3. Kinetic parameters of the chemical reaction control model for Rh leaching at different temperatures
T/℃ k R2 45 0.00146 0.9818 60 0.0014 0.9864 75 0.00467 0.9821 90 0.00762 0.9663 www.77susu.com -
參考文獻
[1] Hülsey M J, Zhang B, Ma Z, et al. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat Commun, 2019, 10: 1330 doi: 10.1038/s41467-019-09188-9 [2] Yuan Q, Song X, Feng S, et al. An efficient and ultrastable single-Rh-site catalyst on a porous organic polymer for heterogeneous hydrocarboxylation of olefins. Chem Commun (Camb) , 2021, 57(4): 472 doi: 10.1039/D0CC06863B [3] Ding Y J, Zhang S G. Status and research progress on recovery of platinum group metals from spent catalysts. Chin J Eng, 2020, 42(3): 257丁云集, 張深根. 廢催化劑中鉑族金屬回收現狀與研究進展. 工程科學學報, 2020, 42(3):257 [4] Ding Y J, Zheng H D, Zhang S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl, 2020, 155: 104644 doi: 10.1016/j.resconrec.2019.104644 [5] Ding Y J, Zhang X Y, Wu B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resour Conserv Recycl, 2021, 166: 105373 doi: 10.1016/j.resconrec.2020.105373 [6] Hermans I. Methane upgraded by rhodium. Nature, 2017, 551(7682): 575 doi: 10.1038/d41586-017-07437-9 [7] Shan J J, Li M W, Allard L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 2017, 551(7682): 605 doi: 10.1038/nature24640 [8] Yang L J, Wang H, Rempel G L, et al. Recovery of wilkinson's catalyst from hydrogenated nitrile butadiene rubber latex nanoparticles. Top Catal, 2014, 57(17-20): 1558 doi: 10.1007/s11244-014-0333-1 [9] Murphy S K, Park J W, Cruz F A, et al. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science, 2015, 347(6217): 56 doi: 10.1126/science.1261232 [10] Campos C H, Belmar J B, Jeria S E, et al. Rhodium(I) diphenylphosphine complexes supported on porous organic polymers as efficient and recyclable catalysts for alkene hydrogenation. RSC Adv, 2017, 7(6): 3398 doi: 10.1039/C6RA26104C [11] Peng Q R, Deng C X, Yang Y, et al. Recycle and recovery of rhodium complexes with water-soluble and amphiphilic phosphines in ionic liquids for hydroformylation of 1-hexene. React Kinetics Catal Lett, 2007, 90(1): 53 doi: 10.1007/s11144-007-4975-x [12] Pan Z F, Liu W P, Chen J L, et al. Research and application of platinum metal homogeneous catalysts. Precious Met, 2009, 30(3): 42潘再富, 劉偉平, 陳家林, 等. 鉑族金屬均相催化劑的研究和應用. 貴金屬, 2009, 30(3):42 [13] Li Q. Recovery of Rhodium from Low Concentration Rhodium-Containing Organic Waste Liquid [Dissertation]. Kunming: Kunming Institute of Precious Metals, 2017李強. 從低濃度含銠有機廢液中回收銠的研究[學位論文]. 昆明: 昆明貴金屬研究所, 2017 [14] Jiang L Y, Yu H B, Li C, et al. Study on rhodium recovery process by roasting rhodium containing waste catalyst from butyl octanol unit. Inorg Chem Ind, 2015, 47(4): 51蔣凌云, 于海斌, 李晨, 等. 丁辛醇廢銠催化劑焙燒銠回收工藝研究. 無機鹽工業, 2015, 47(4):51 [15] Du J S. Recovery of rhodium from rhodium containing waste homogeneous catalyst by aluminium crushing. China Chemical Trade, 2017, 9(18): 130杜繼山. 鋁碎法回收銠均相催化劑廢液中的銠. 中國化工貿易, 2017, 9(18):130 [16] Dong H G, Zhao J C, Chen J L, et al. Recovery of platinum group metals from spent catalysts: A review. Int J Miner Process, 2015, 145: 108 doi: 10.1016/j.minpro.2015.06.009 [17] Yang L J, Pan Q M, Rempel G L. Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal Today, 2013, 207: 153 doi: 10.1016/j.cattod.2012.02.024 [18] Jiang L Y, Li C, Li J X, et al. Study on preparing high-purity rhodium chloride by using digestion solution produced in dispelling waste catalyst containing rhodium from butyl octanol unit. Inorg Chem Ind, 2017, 49(11): 76蔣凌云, 李晨, 李繼霞, 等. 丁辛醇廢銠催化劑消解液制備高純三氯化銠研究. 無機鹽工業, 2017, 49(11):76 [19] Davidson W C, Fieselmann B F. Recovery of Rhodium from Carbonylation Residues: USA Patent, US4341741. 1982-07-27 [20] Wu Y Y, Zhou S Q, Qin F H, et al. Removal of humic acids by oxidation and coagulation during Fenton treatment. Environ Sci, 2010, 31(4): 996吳彥瑜, 周少奇, 覃芳慧, 等. Fenton法氧化/混凝作用去除腐殖酸的研究. 環境科學, 2010, 31(4):996 [21] Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater, 2001, 84(1): 57 doi: 10.1016/S0304-3894(01)00202-3 [22] Wang Y L, Xiao L, Fu G Y, et al. Arsenic removal from pyrite cinders in Na2S-NaOH solution with parameters optimized using the response surface methodology. Chin J Eng, 2018, 40(9): 1036王永良, 肖力, 付國燕, 等. 響應曲面法優化Na2S-NaOH體系浸出硫酸燒渣中的砷. 工程科學學報, 2018, 40(9):1036 [23] Bao J W, Liu Z G, Chu M S, et al. Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology. Int J Miner Metall Mater, 2021, 28(12): 1917 doi: 10.1007/s12613-020-2188-8 [24] Ding Y J, Zheng H D, Li J Y, et al. Recovery of platinum from spent petroleum catalysts: Optimization using response surface methodology. Metals, 2019, 9(3): 354 doi: 10.3390/met9030354 [25] Tan B, Wang L J, Yan B J, et al. Kinetics of chlorination of vanadium slag by microwave heating. Chin J Eng, 2020, 42(9): 1157譚博, 王麗君, 閆柏軍, 等. 微波場下的釩渣氯化動力學. 工程科學學報, 2020, 42(9):1157 -