<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

廢均相催化劑氧化?絡合浸出銠工藝及其動力學

丁云集 李佳怡 鄭環東 崔言杰 劉波 張深根

丁云集, 李佳怡, 鄭環東, 崔言杰, 劉波, 張深根. 廢均相催化劑氧化?絡合浸出銠工藝及其動力學[J]. 工程科學學報, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005
引用本文: 丁云集, 李佳怡, 鄭環東, 崔言杰, 劉波, 張深根. 廢均相催化劑氧化?絡合浸出銠工藝及其動力學[J]. 工程科學學報, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005
DING Yun-ji, LI Jia-yi, ZHENG Huan-dong, CUI Yan-jie, LIU Bo, ZHANG Shen-gen. Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts[J]. Chinese Journal of Engineering, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005
Citation: DING Yun-ji, LI Jia-yi, ZHENG Huan-dong, CUI Yan-jie, LIU Bo, ZHANG Shen-gen. Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts[J]. Chinese Journal of Engineering, 2023, 45(2): 214-222. doi: 10.13374/j.issn2095-9389.2021.10.20.005

廢均相催化劑氧化?絡合浸出銠工藝及其動力學

doi: 10.13374/j.issn2095-9389.2021.10.20.005
基金項目: 國家重點研發專項資助項目(2021YFC1910504,2019YFC1907101);國家自然科學基金資助項目(U2002212,52204412);廣東省基礎與應用基礎研究基金資助項目(2020A1515110408);佛山市人民政府科技創新專項資金資助項目(BK21BE002);中央高校基本科研業務費資助項目(FRF-TP-20-031A1)
詳細信息
    通訊作者:

    E-mail: zhangshengen@mater.ustb.edu.cn

  • 中圖分類號: TF837

Oxidation–complexation leaching and kinetic study of rhodium from spent homogeneous catalysts

More Information
  • 摘要: 基于Rh在廢均相催化劑中的賦存狀態,研發出綠色解離Rh–P化學鍵及Rh的絡合浸出新技術,實現了Rh的綠色高效浸出,杜絕了傳統廢均相催化劑焚燒–碎化–酸浸工藝流程長、污染嚴重、回收率低等問題。首先通過蒸餾將低熔點有機物去除,然后采用H2O2將均相銠膦絡合物中的Rh+氧化成Rh3+,減少有機配體對Rh的束縛;同時Rh3+與Cl絡合形成水溶性的RhCl63–進入溶液中。研究了蒸餾溫度、Cl濃度、H2O2用量、H+濃度、反應時間等對Rh的回收率影響,并采用響應曲面法優化了Cl濃度、H2O2用量和反應時間等工藝參數。結果表明:各參數對Rh回收率的影響大小為:H2O2用量>Cl濃度>反應時間,優化的工藝參數為:蒸餾溫度260 ℃、Cl濃度3.0 mol?L–1、H2O2用量為廢均相催化劑的37%(體積分數)、H+濃度1.0 mol?L–1、反應時間4.5 h,Rh的回收率達到98.22%。最后,采用分光光度法研究了Rh的氧化–絡合動力學行為,表明該反應的活化能為39.24 kJ?mol–1,屬于化學反應控速。

     

  • 圖  1  廢銠均相催化劑的回收工藝流程圖

    Figure  1.  Schematic of the recovery process of spent Rh homogeneous catalysts

    圖  2  蒸餾過程示意圖

    Figure  2.  Diagram of the distillation process

    圖  3  紅外分析光譜.(a)廢均相催化劑;(b)蒸餾產物

    Figure  3.  Infrared absorption spectrum recorded: (a) spent RCHC; (b) distillate

    圖  4  240~320 ℃下蒸餾產物的體積及Rh濃度

    Figure  4.  Volume of distillate and concentration of Rh at temperatures ranging from 240–320 ℃

    圖  5  氯離子濃度(a)、雙氧水用量(b)、反應時間(c)、H+濃度(d)對Rh浸出率的影響

    Figure  5.  Effects of Cl concentration (a), H2O2 dosage (b), leaching time (c), and H+ concentration (d) on Rh leaching efficiency

    圖  6  不同因素相互作用對Rh浸出率影響的三維響應圖. (a) C, time=4 h; (b) B, c(Cl) = 5 mol?L–1; (c) A, H2O2用量為30%

    Figure  6.  Response surface plots for the interaction effects on the Rh leaching rate: (a) C, time = 4 h; (b) (b) B, c(Cl) = 5 mol?L–1; (c) A, H2O2 dosage of 30%

    圖  7  廢均相催化劑氧化浸出Rh的反應示意圖

    Figure  7.  Diagram of oxidation leaching of Rh using spent homogeneous catalysts

    圖  8  不同濃度的RhCl63–溶液的紫外吸收光譜

    Figure  8.  Ultraviolet absorption spectra of RhCl63? solution at different concentrations

    圖  9  ln(A? At)與反應時間的關系

    Figure  9.  Relationship between ln(A? At) and reaction time

    圖  10  40~90 ℃反應條件下Rh氧化浸出的Arrhenius圖

    Figure  10.  Arrhenius plot for oxidation leaching of Rh at temperatures of 40–90 ℃

    表  1  Rh氧化浸出回歸方程的方差分析

    Table  1.   ANOVA results of the reduced quadratic model for the Rh leaching efficiency

    SourceSum of squaresMean squareF valuep-value Prob>F
    Model10550.871172.3212.380.0003
    A3690.053690.0538.97< 0.0001
    B2460.032460.0325.980.0005
    C341.94341.943.610.0866
    AB5.415.410.0570.8159
    AC484.85484.855.120.0471
    BC307.27307.273.250.1018
    A22254.832254.8323.820.0006
    B2410.16410.164.330.0641
    C21121.331121.3311.840.0063
    Residual946.8094.68
    Lack of fit941.00188.20162.32< 0.0001
    Pure error5.801.16
    Cor total11497.66
    下載: 導出CSV

    表  2  響應曲面模型的相關性分析

    Table  2.   Correlation analysis of response surface method

    CategoryValueCategoryValue
    Standard deviation9.73R20.9177
    Mean63.47Radj20.8435
    Coefficient of fariance15.33Pred R20.3791
    PRESS7139.13Adeq precision10.702
    下載: 導出CSV

    表  3  不同溫度下Rh氧化絡合浸出動力學參數

    Table  3.   Kinetic parameters of the chemical reaction control model for Rh leaching at different temperatures

    T/kR2
    450.001460.9818
    600.00140.9864
    750.004670.9821
    900.007620.9663
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hülsey M J, Zhang B, Ma Z, et al. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat Commun, 2019, 10: 1330 doi: 10.1038/s41467-019-09188-9
    [2] Yuan Q, Song X, Feng S, et al. An efficient and ultrastable single-Rh-site catalyst on a porous organic polymer for heterogeneous hydrocarboxylation of olefins. Chem Commun (Camb), 2021, 57(4): 472 doi: 10.1039/D0CC06863B
    [3] Ding Y J, Zhang S G. Status and research progress on recovery of platinum group metals from spent catalysts. Chin J Eng, 2020, 42(3): 257

    丁云集, 張深根. 廢催化劑中鉑族金屬回收現狀與研究進展. 工程科學學報, 2020, 42(3):257
    [4] Ding Y J, Zheng H D, Zhang S G, et al. Highly efficient recovery of platinum, palladium, and rhodium from spent automotive catalysts via iron melting collection. Resour Conserv Recycl, 2020, 155: 104644 doi: 10.1016/j.resconrec.2019.104644
    [5] Ding Y J, Zhang X Y, Wu B Y, et al. Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resour Conserv Recycl, 2021, 166: 105373 doi: 10.1016/j.resconrec.2020.105373
    [6] Hermans I. Methane upgraded by rhodium. Nature, 2017, 551(7682): 575 doi: 10.1038/d41586-017-07437-9
    [7] Shan J J, Li M W, Allard L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 2017, 551(7682): 605 doi: 10.1038/nature24640
    [8] Yang L J, Wang H, Rempel G L, et al. Recovery of wilkinson's catalyst from hydrogenated nitrile butadiene rubber latex nanoparticles. Top Catal, 2014, 57(17-20): 1558 doi: 10.1007/s11244-014-0333-1
    [9] Murphy S K, Park J W, Cruz F A, et al. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science, 2015, 347(6217): 56 doi: 10.1126/science.1261232
    [10] Campos C H, Belmar J B, Jeria S E, et al. Rhodium(I) diphenylphosphine complexes supported on porous organic polymers as efficient and recyclable catalysts for alkene hydrogenation. RSC Adv, 2017, 7(6): 3398 doi: 10.1039/C6RA26104C
    [11] Peng Q R, Deng C X, Yang Y, et al. Recycle and recovery of rhodium complexes with water-soluble and amphiphilic phosphines in ionic liquids for hydroformylation of 1-hexene. React Kinetics Catal Lett, 2007, 90(1): 53 doi: 10.1007/s11144-007-4975-x
    [12] Pan Z F, Liu W P, Chen J L, et al. Research and application of platinum metal homogeneous catalysts. Precious Met, 2009, 30(3): 42

    潘再富, 劉偉平, 陳家林, 等. 鉑族金屬均相催化劑的研究和應用. 貴金屬, 2009, 30(3):42
    [13] Li Q. Recovery of Rhodium from Low Concentration Rhodium-Containing Organic Waste Liquid [Dissertation]. Kunming: Kunming Institute of Precious Metals, 2017

    李強. 從低濃度含銠有機廢液中回收銠的研究[學位論文]. 昆明: 昆明貴金屬研究所, 2017
    [14] Jiang L Y, Yu H B, Li C, et al. Study on rhodium recovery process by roasting rhodium containing waste catalyst from butyl octanol unit. Inorg Chem Ind, 2015, 47(4): 51

    蔣凌云, 于海斌, 李晨, 等. 丁辛醇廢銠催化劑焙燒銠回收工藝研究. 無機鹽工業, 2015, 47(4):51
    [15] Du J S. Recovery of rhodium from rhodium containing waste homogeneous catalyst by aluminium crushing. China Chemical Trade, 2017, 9(18): 130

    杜繼山. 鋁碎法回收銠均相催化劑廢液中的銠. 中國化工貿易, 2017, 9(18):130
    [16] Dong H G, Zhao J C, Chen J L, et al. Recovery of platinum group metals from spent catalysts: A review. Int J Miner Process, 2015, 145: 108 doi: 10.1016/j.minpro.2015.06.009
    [17] Yang L J, Pan Q M, Rempel G L. Development of a green separation technique for recovery of Wilkinson's catalysts from bulk hydrogenated nitrile butadiene rubber. Catal Today, 2013, 207: 153 doi: 10.1016/j.cattod.2012.02.024
    [18] Jiang L Y, Li C, Li J X, et al. Study on preparing high-purity rhodium chloride by using digestion solution produced in dispelling waste catalyst containing rhodium from butyl octanol unit. Inorg Chem Ind, 2017, 49(11): 76

    蔣凌云, 李晨, 李繼霞, 等. 丁辛醇廢銠催化劑消解液制備高純三氯化銠研究. 無機鹽工業, 2017, 49(11):76
    [19] Davidson W C, Fieselmann B F. Recovery of Rhodium from Carbonylation Residues: USA Patent, US4341741. 1982-07-27
    [20] Wu Y Y, Zhou S Q, Qin F H, et al. Removal of humic acids by oxidation and coagulation during Fenton treatment. Environ Sci, 2010, 31(4): 996

    吳彥瑜, 周少奇, 覃芳慧, 等. Fenton法氧化/混凝作用去除腐殖酸的研究. 環境科學, 2010, 31(4):996
    [21] Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater, 2001, 84(1): 57 doi: 10.1016/S0304-3894(01)00202-3
    [22] Wang Y L, Xiao L, Fu G Y, et al. Arsenic removal from pyrite cinders in Na2S-NaOH solution with parameters optimized using the response surface methodology. Chin J Eng, 2018, 40(9): 1036

    王永良, 肖力, 付國燕, 等. 響應曲面法優化Na2S-NaOH體系浸出硫酸燒渣中的砷. 工程科學學報, 2018, 40(9):1036
    [23] Bao J W, Liu Z G, Chu M S, et al. Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology. Int J Miner Metall Mater, 2021, 28(12): 1917 doi: 10.1007/s12613-020-2188-8
    [24] Ding Y J, Zheng H D, Li J Y, et al. Recovery of platinum from spent petroleum catalysts: Optimization using response surface methodology. Metals, 2019, 9(3): 354 doi: 10.3390/met9030354
    [25] Tan B, Wang L J, Yan B J, et al. Kinetics of chlorination of vanadium slag by microwave heating. Chin J Eng, 2020, 42(9): 1157

    譚博, 王麗君, 閆柏軍, 等. 微波場下的釩渣氯化動力學. 工程科學學報, 2020, 42(9):1157
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數:  402
  • HTML全文瀏覽量:  209
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-21
  • 網絡出版日期:  2022-10-18
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回