<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高強導電Cu?3Ti?0.1Mg?0.05B?0.05La合金的微觀組織與性能

王虎 莫永達 婁花芬

王虎, 莫永達, 婁花芬. 高強導電Cu?3Ti?0.1Mg?0.05B?0.05La合金的微觀組織與性能[J]. 工程科學學報, 2023, 45(2): 295-300. doi: 10.13374/j.issn2095-9389.2021.10.20.004
引用本文: 王虎, 莫永達, 婁花芬. 高強導電Cu?3Ti?0.1Mg?0.05B?0.05La合金的微觀組織與性能[J]. 工程科學學報, 2023, 45(2): 295-300. doi: 10.13374/j.issn2095-9389.2021.10.20.004
WANG Hu, MO Yong-da, LOU Hua-fen. Microstructure and properties of a novel Cu–3Ti–0.1Mg–0.05B–0.05 La alloy with high strength and conductivity[J]. Chinese Journal of Engineering, 2023, 45(2): 295-300. doi: 10.13374/j.issn2095-9389.2021.10.20.004
Citation: WANG Hu, MO Yong-da, LOU Hua-fen. Microstructure and properties of a novel Cu–3Ti–0.1Mg–0.05B–0.05 La alloy with high strength and conductivity[J]. Chinese Journal of Engineering, 2023, 45(2): 295-300. doi: 10.13374/j.issn2095-9389.2021.10.20.004

高強導電Cu?3Ti?0.1Mg?0.05B?0.05La合金的微觀組織與性能

doi: 10.13374/j.issn2095-9389.2021.10.20.004
基金項目: 北京市科技計劃課題資助項目(Z201100004520023); 中鋁啟明星計劃資助項目(2019MXJH06)
詳細信息
    通訊作者:

    E-mail: louhuafen@cmari.com

  • 中圖分類號: TG135

Microstructure and properties of a novel Cu–3Ti–0.1Mg–0.05B–0.05 La alloy with high strength and conductivity

More Information
  • 摘要: 采用真空熔鑄和冷開坯工藝,通過優化形變熱處理工藝,調控基體晶粒尺寸、第二相的析出及分布狀態,制備出綜合性能優異的Cu?3Ti?0.1Mg?0.05B?0.05La合金。結果表明,經過400 ℃/2 h一次時效處理后,Cu?3Ti?0.1Mg?0.05B?0.05La合金的顯微硬度可達356 HV,此時導電率為14.5%IACS。透射電鏡分析表明,Cu?3Ti?0.1Mg?0.05B?0.05La合金第二相的析出演變規律為富Ti相→顆粒狀β′-Cu4Ti相→顆粒狀β′-Cu4Ti相+片層狀β-Cu4Ti相→片層狀β-Cu4Ti相,其中顆粒狀β′-Cu4Ti相是最重要的強化相,片層狀β-Cu4Ti相會導致合金強度下降,但可以提高導電率。采用二次時效能夠進一步優化Cu?3Ti?0.1Mg?0.05B?0.05La合金的綜合性能,在合金強度基本不變的條件下,顯著提升了合金的導電率。450 ℃/8 h一次時效+50%冷軋+400 ℃/1 h二次時效處理后合金的顯微硬度和導電率分別達到了341 HV和20.5%IACS。

     

  • 圖  1  合金組織形貌. (a) 鑄態金相組織; (b) 鑄態SEM組織; (c) 800 ℃/24 h均勻化后SEM組織; (d) 820 ℃/2 h固溶后金相組織

    Figure  1.  Microstructure of the alloy: (a) metallographic structure of the ingot; (b) SEM picture of the ingot; (c) SEM structure of the homogenized alloy at 800 ℃/24 h; (d) metallographic structure of the solution-treated alloy at 820 ℃/2 h

    圖  2  時效溫度對合金顯微硬度(a)和導電率(b)的影響

    Figure  2.  Variation in the microhardness (a) and conductivity (b) of the sample treated with different aging processes

    圖  3  TEM組織明場像. (a)冷軋態; (b)350 ℃/2 h時效; (c)400 ℃/0.5 h時效; (d)400 ℃/2 h時效; (e)450 ℃/1 h時效; (f)450 ℃/8 h時效

    Figure  3.  TEM bright field images of the as-solution sample treated with (a) the cold rolling of 50% and aging at (b) 350 °C/2 h; (c) 400 °C/0.5 h; (d) 400 °C/2 h; (e) 450 °C/1 h; (f) 450 °C/8 h

    圖  4  450 ℃/8 h一次時效后進行50%冷軋及二次時效TEM明場像形貌. (a)冷軋態; (b)400 ℃/1 h; (c) 400 ℃/2 h

    Figure  4.  TEM bright field images of the alloy after preaging at 450 °C/8 h, then cold rolling of 50%, followed by aging at (a) cold rolling; (b) 400 °C/1 h; (c) 400 °C/2 h

    表  1  圖1(b)鑄態組織中區域A和B的元素分析(質量分數)

    Table  1.   EDS contents of the locations A and B in Fig.1(b) %

    LocationTiMgBLaCu
    Location A1.470.100.030.0698.34
    Location B45.920.110.060.0453.87
    下載: 導出CSV

    表  2  合金二次時效處理過程中合金的硬度和導電率

    Table  2.   Microhardness and conductivity of the sample treated with different aging processes

    Aging processMicrohardness (HV)Conductivity/%IACS
    First aging 450 °C/8 h31018.9
    First aging 450 °C/8 h + Cold rolling 50%32517.0
    Secondary aging 400 °C/0.5 h33419.1
    Secondary aging 400 °C/1 h34120.5
    Secondary aging 400 °C/2 h32220.8
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Gorsse S, Ouvrard B, Gouné M, et al. Microstructural design of new high conductivity-high strength Cu-based alloy. J Alloys Compd, 2015, 633: 42 doi: 10.1016/j.jallcom.2015.01.234
    [2] Laughlin D E, Cahn J W. Spinodal decomposition in age hardening copper-titanium alloys. Acta Metall, 1975, 23(3): 329 doi: 10.1016/0001-6160(75)90125-X
    [3] Semboshi S, Amano S, Fu J, et al. Kinetics and equilibrium of age-induced precipitation in Cu-4 At Pct Ti binary alloy. Metall Mater Trans A, 2017, 48(3): 1501 doi: 10.1007/s11661-016-3949-x
    [4] Li S, Li Z, Xiao Z, et al. Microstructure and property of Cu?2.7Ti?0.15Mg?0.1Ce?0.1Zr alloy treated with a combined aging process. Mater Sci Eng A, 2016, 650: 345
    [5] Li R P, Dong Y G, Wu M W, et al. Study on precipitation kinetics of phase transformation of cold rolled Cu?3Ti alloy foil. Hot Work Technol, 2020, 49(6): 136 doi: 10.14158/j.cnki.1001-3814.20182941

    李榮平, 董亞光, 武明偉, 等. 冷軋態Cu?3Ti合金箔時效析出相變動力學研究. 熱加工工藝, 2020, 49(6):136 doi: 10.14158/j.cnki.1001-3814.20182941
    [6] Semboshi S, Kaneno Y, Takasugi T, et al. Effect of composition on the strength and electrical conductivity of Cu?Ti binary alloy wires fabricated by aging and intense drawing. Metall Mater Trans A, 2019, 50(3): 1389 doi: 10.1007/s11661-018-5088-z
    [7] Markandeya R, Nagarjuna S, Sarma D S. Precipitation hardening of Cu?Ti?Cr alloys. Mater Sci Eng A, 2004, 371(1-2): 291 doi: 10.1016/j.msea.2003.12.002
    [8] Koike K, Clarke K D, Clarke A J. Microstructural evolution and mechanical properties of heavily cold-rolled and subsequently annealed Cu?3wt.%Ti alloys with nano-lamellar structure. JOM, 2019, 71(12): 4789
    [9] Suzuki S, Hirabayashi K, Shibata H, et al. Electrical and thermal conductivities in quenched and aged high-purity Cu?Ti alloys. Scr Mater, 2003, 48(4): 431 doi: 10.1016/S1359-6462(02)00441-4
    [10] Cao X M, Zhu Y B, Guo F A, et al. Hot deformation behavior and microstructure of Cu−Ti alloy. Rare Met Mater Eng, 2009, 38(Suppl 1): 509

    曹興民, 朱玉斌, 郭富安, 等. Cu−Ti合金的熱變形行為及其組織研究. 稀有金屬材料與工程, 2009, 38(增刊1): 509
    [11] Liu J, Wang X H, Ran Q N, et al. Pre-deformation and aging characteristics of Cu?3Ti?2Mg alloy. Rare Met Mater Eng, 2018, 47(7): 1980 doi: 10.1016/S1875-5372(18)30168-1
    [12] Semboshi S, Kaneno Y, Takasugi T, et al. High strength and high electrical conductivity Cu?Ti alloy wires fabricated by aging and severe drawing. Metall Mater Trans A, 2018, 49(10): 4956 doi: 10.1007/s11661-018-4816-8
    [13] Ramesh S, Nayaka H S, Sahu S, et al. Influence of multiaxial cryoforging on microstructural, mechanical, and corrosion properties of copper-titanium alloy. J Mater Eng Perform, 2019, 28(12): 7629 doi: 10.1007/s11665-019-04454-9
    [14] Szkliniarz A. Formation of microstructure and properties of Cu?3Ti alloy in thermal and thermomechanical processes. Arch Metall Mater, 2017, 62(1): 223 doi: 10.1515/amm-2017-0033
    [15] Wei H, Wei Y H, Hou L F. The phase transition and applications of age hardening copper-titanium alloys. J Funct Mater, 2015, 46(10): 10001

    衛歡, 衛英慧, 侯利鋒. 時效硬化銅鈦合金的相變和應用. 功能材料, 2015, 46(10):10001
  • 加載中
圖(4) / 表(2)
計量
  • 文章訪問數:  443
  • HTML全文瀏覽量:  186
  • PDF下載量:  51
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-20
  • 網絡出版日期:  2021-12-21
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回