<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

時速350 km高速列車用銅基閘片材料的摩擦性能

曲選輝 章林 張鵬 吳佩芳 曹靜武 魏東彬

曲選輝, 章林, 張鵬, 吳佩芳, 曹靜武, 魏東彬. 時速350 km高速列車用銅基閘片材料的摩擦性能[J]. 工程科學學報, 2023, 45(3): 389-399. doi: 10.13374/j.issn2095-9389.2021.10.20.003
引用本文: 曲選輝, 章林, 張鵬, 吳佩芳, 曹靜武, 魏東彬. 時速350 km高速列車用銅基閘片材料的摩擦性能[J]. 工程科學學報, 2023, 45(3): 389-399. doi: 10.13374/j.issn2095-9389.2021.10.20.003
QU Xuan-hui, ZHANG Lin, ZHANG Peng, WU Pei-fang, CAO Jing-wu, WEI Dong-bin. Friction performance of Cu-based brake pad for high-speed railway trains[J]. Chinese Journal of Engineering, 2023, 45(3): 389-399. doi: 10.13374/j.issn2095-9389.2021.10.20.003
Citation: QU Xuan-hui, ZHANG Lin, ZHANG Peng, WU Pei-fang, CAO Jing-wu, WEI Dong-bin. Friction performance of Cu-based brake pad for high-speed railway trains[J]. Chinese Journal of Engineering, 2023, 45(3): 389-399. doi: 10.13374/j.issn2095-9389.2021.10.20.003

時速350 km高速列車用銅基閘片材料的摩擦性能

doi: 10.13374/j.issn2095-9389.2021.10.20.003
基金項目: 國家自然科學基金資助項目(51974029,52204369,52074032);國家重點研發計劃重點專項資助項目(2016YFB0301403);廣東省基礎與應用基礎研究基金聯合基金資助項目(2021B1515120033);佛山市人民政府科技創新專項資金資助項目(BK20BE015);中央高校基本科研業務費資助項目(FRF-AT-19-013、FRF-GF-20-27B);新金屬材料國家重點實驗室自主課題(2015Z-06)
詳細信息
    通訊作者:

    曲選輝,E-mail:quxh@ustb.edu.cn

    章林,E-mail:zlin@ustb.edu.cn

  • 中圖分類號: TF125

Friction performance of Cu-based brake pad for high-speed railway trains

More Information
  • 摘要: 閘片是高速列車制動系統的核心部件,本文設計了350 km·h–1高速列車用銅基閘片材料,對閘片進行了1∶1臺架實驗考核,重點分析了摩擦膜的性質及閘片的摩擦磨損性能。結果表明,研制閘片不僅具有優異的摩擦系數穩定性和低的磨耗,還具有不傷盤的特點。瞬時摩擦系數和平均摩擦系數均滿足TJCL/307—2019標準的要求,摩擦系數穩定性為0.0015,250~380 km?h–1制動速率范圍內的摩擦系數熱衰退僅0.027,在380 km?h–1下的平均摩擦系數仍維持在0.35,平均磨耗僅0.06 cm3?MJ–1。閘片優異的摩擦制動性能歸因于形成了高強韌、低轉移速率的摩擦膜。利用大粒徑摩擦組元作為外部運動障礙釘扎摩擦膜。摩擦膜中的亞微米磨屑作為摩擦膜與對偶盤的嚙合點,提供摩擦阻力,以保持高速制動時的摩擦系數。添加的易氧化組元為摩擦膜源源不斷提供氧化物,研磨生成的納米氧化物作為彌散相強化摩擦膜。通過多尺度顆粒的協同增強,實現了摩擦膜的動態穩定化,賦予了閘片優異的摩擦磨損性能。

     

  • 圖  1  銅基摩擦塊的BSE顯微組織

    Figure  1.  BSE images of the microstructure of Cu-based brake pads

    圖  2  美國Link 3600型1∶1制動臺架.(a)整體形貌;(b)慣量系統;(3)制動盤;(d)實驗過程中制動盤狀態

    Figure  2.  Full-scale dynamometer (Link 3600, US): (a) overall morphology; (b) inertia system; (c) brake disc; (d) morphology of the brake disc during the test

    圖  3  不同制動速度下的瞬時摩擦系數和制動壓力.(a)200 km?h–1;(b)250 km?h–1;(c)300 km?h–1;(d)350 km?h–1;(e)380 km?h–1

    Figure  3.  Instantaneous friction coefficient and braking force under different braking speeds: (a) 200 km·h?1; (b) 250 km·h?1; (c) 300 km·h?1; (d) 350 km·h?1; (e) 380 km·h?1

    圖  4  1∶1臺架實驗的平均摩擦系數.(a)干燥條件;(b)潮濕條件

    Figure  4.  Average friction coefficient from full-scale dynamometer under different conditions: (a) dry; (b) wet

    圖  5  在80 km·h–1下,以30 kW在壓力32 kN下持續制動20 min的瞬時摩擦系數和溫度的變化

    Figure  5.  Variations of instantaneous friction coefficient and temperature during the continuous 20 min braking with the power of 30 kW, braking force of 32 kN, and braking speed of 80 km·h?1

    圖  6  1∶1臺架實驗前(a)后(b)閘片的形貌

    Figure  6.  Morphology of the brake pad before (a) and after (b) the braking test on the full-scale dynamometer

    圖  7  1∶1臺架實驗前后制動盤的形貌.(a)實驗前;(b)實驗后

    Figure  7.  Morphology of the brake disc: (a) before the test; (b) after the test on the full-scale dynamometer

    圖  8  磨損表面在LSCM下的形貌,相應的三維形貌和高度分析.(a1~a3)具有大面積摩擦膜覆蓋的區域;(b1~b3)發生剝離磨損的區域

    Figure  8.  LSCM images of the worn surface, 3D morphologies, and corresponding height analysis: (a1–a3) regions covered by the large-scale friction film; (b1–b3) wear regions

    圖  9  摩擦膜的BSE形貌(a,b)以及圖(b)中相應的元素面分布分析.(c) Cu; (d) Si; (e) Fe; (f) Cr

    Figure  9.  BSE images of the friction film (a,b) and element mapping in (b): (c) Cu; (d) Si; (e) Fe; (f) Cr

    圖  10  摩擦表面橫截面的BSE顯微組織

    Figure  10.  BSE images of the cross-section of the friction surface

    圖  11  表層摩擦膜中納米相的TEM形貌.(a)氧化物顆粒形貌;(b)氧化物的高分辨TEM(HRTEM)顯微組織;(c)石墨形貌;(d)粒徑不同的氧化物顆粒

    Figure  11.  TEM images of nanoparticles in the friction film: (a) image of oxide particles; (b) HRTEM image of oxide particles; (c) image of graphite; (d) oxide particles with different particle sizes

    表  1  銅基閘片材料的成分及各組元粒徑

    Table  1.   Chemical compositions of Cu-based friction materials and size of the components

    ComponentMass fraction/%Particle size/μm
    Cu44–5248–75
    Fe16–2645–150
    CrFe1–530–80
    Cr1–530–80
    Graphite5–10150–400
    SiO21–510–40
    Others1–5
    下載: 導出CSV

    表  2  閘片的力學性能及1∶1臺架試驗數據

    Table  2.   Mechanical properties of brake pads and test data from the full-scale dynamometer

    Performance criteriaPrepared brake pads
    Density/(g·cm–3)5.04
    Hardness(HB)17
    Shear strength of friction body/MPa16
    Shear strength of bonding surface/MPa25
    Compressive strength of friction body/MPa130
    Instantaneous friction coefficient, μaMeet the tolerance requirements of instantaneous friction coefficient
    Mean friction coefficient, μmMeet the tolerance requirements of the mean friction coefficient
    Mean wear loss/(cm3·MJ–1)0.06
    Temperature distribution of the brake discUniform distribution
    Stability of μa (50–250 km·h–1)0.021
    Stability of μa (300 km·h–1)0.0074
    Stability of μa (350 km·h–1)0.0127
    Stability of μa (380 km·h–1)0.0015
    Fading of μa (250–380 km·h–1)0.027
    Braking distance, m (braking at 380 km·h–1 and the maximum clamping force)7018
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhou H B, Yao P P, Xiao Y L, et al. Friction and wear maps of copper metal matrix composites with different iron volume content. Tribol Int, 2019, 132: 199 doi: 10.1016/j.triboint.2018.11.027
    [2] Xiao Y L, Zhang Z Y, Yao P P, et al. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol Int, 2018, 119: 585 doi: 10.1016/j.triboint.2017.11.038
    [3] Kovalchenko A M, Fushchich O I, Danyluk S. The tribological properties and mechanism of wear of Cu-based sintered powder materials containing molybdenum disulfide and molybdenum diselenite under unlubricated sliding against copper. Wear, 2012, 290-291: 106 doi: 10.1016/j.wear.2012.05.001
    [4] Zhu S, Pan Q R, Zhai C Z, et al. Research of PM brake pad for 350 km/h Fuxing standard EMUs. Locomot &Roll Stock Technol, 2019(3): 1

    朱松, 潘祺睿, 翟財周, 等. 時速350 km標準動車組粉末冶金閘片的研究. 機車車輛工藝, 2019(3):1
    [5] Li W X, Jiao B Q, Li J S, et al. Powder metallurgy brake pad development and test research of high speed train. Railw Locomot &Car, 2011, 31(5): 100 doi: 10.3969/j.issn.1008-7842.2011.05.024

    李萬新, 焦標強, 李繼山, 等. 高速動車組粉末冶金閘片研制及試驗研究. 鐵道機車車輛, 2011, 31(5):100 doi: 10.3969/j.issn.1008-7842.2011.05.024
    [6] Yao P P, Xiao Y L, Zhang Z Y, et al. Progress in powder metallurgical brake materials for high-speed trains. Mater China, 2019, 38(2): 116 doi: 10.7502/j.issn.1674-3962.2019.02.06

    姚萍屏, 肖葉龍, 張忠義, 等. 高速列車粉末冶金制動材料的研究進展. 中國材料進展, 2019, 38(2):116 doi: 10.7502/j.issn.1674-3962.2019.02.06
    [7] Zhang P, Zhang L, Wei D B, et al. Adjusting function of MoS2 on the high-speed emergency braking properties of copper-based brake pad and the analysis of relevant tribo-film of eddy structure. Compos B Eng, 2020, 185: 107779 doi: 10.1016/j.compositesb.2020.107779
    [8] Zhang P, Zhang L, Fu K X, et al. Fade behaviour of copper-based brake pad during cyclic emergency braking at high speed and overload condition. Wear, 2019, 428-429: 10 doi: 10.1016/j.wear.2019.01.126
    [9] Zhang P, Zhang L, Wei D B, et al. A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature. Wear, 2020, 444-445: 203182 doi: 10.1016/j.wear.2019.203182
    [10] Zhang P, Zhang L, Wei D B, et al. Substance evolution and wear mechanism on friction contact area of brake disc for high-speed railway trains at high temperature. Eng Fail Anal, 2020, 111: 104472 doi: 10.1016/j.engfailanal.2020.104472
    [11] Zhang P, Zhang L, Wu P F, et al. Effect of carbon fiber on the braking performance of copper-based brake pad under continuous high-energy braking conditions. Wear, 2020, 458-459: 203408 doi: 10.1016/j.wear.2020.203408
    [12] Zhang P, Zhang L, Wei D B, et al. Effect of graphite type on the contact plateaus and friction properties of copper-based friction material for high-speed railway train. Wear, 2019, 432-433: 202927 doi: 10.1016/j.wear.2019.202927
    [13] Zhang P, Zhang L, Fu K X, et al. Effects of different forms of Fe powder additives on the simulated braking performance of Cu-based friction materials for high-speed railway trains. Wear, 2018, 414-415: 317 doi: 10.1016/j.wear.2018.09.006
    [14] Zhang P, Zhang L, Fu K X, et al. The effect of Al2O3 fiber additive on braking performance of copper-based brake pads utilized in high-speed railway train. Tribol Int, 2019, 135: 444 doi: 10.1016/j.triboint.2019.03.034
    [15] Zhang P, Zhang L, Ren S B, et al. Effect of matrix alloying of Fe on friction and wear properties of Cu-based brake pad materials. Tribol Trans, 2019, 62(4): 701 doi: 10.1080/10402004.2019.1605010
    [16] Zhang P, Zhang L, Wei D B, et al. The synergistic effect of Cr and CrFe particles on the braking behavior of Cu-based Powder metallurgy brake pads. Tribol Trans, 2019, 62(6): 1072 doi: 10.1080/10402004.2019.1648914
    [17] Zhang L, Fu K X, Zhang P, et al. Improved braking performance of Cu-based brake pads by utilizing Cu-coated SiO2 powder. Tribol Trans, 2020, 63(5): 829 doi: 10.1080/10402004.2020.1754537
    [18] Zhang P, Zhang L, Wei D B, et al. Effect of matrix alloying on braking performance of copper-based brake pad under continuous emergency braking. J Tribol, 2020, 142(8): 1
    [19] Zhang P, Zhang L, Fu K X, et al. Effects of Ni-coated graphite flake on braking behavior of Cu-based brake pads applied in high-speed railway trains. J Tribol, 2019, 141(8): 081301 doi: 10.1115/1.4043714
    [20] Peng T, Yan Q Z, Li G, et al. The braking behaviors of Cu-based metallic brake pad for high-speed train under different initial braking speed. Tribol Lett, 2017, 65(4): 135 doi: 10.1007/s11249-017-0914-9
    [21] Wang Y. Study on Fabrication and Properties of Powder Metallurgy Friction Material for Braking of High Speed Train [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    王曄. 高鐵制動用粉末冶金摩擦材料的制備及性能研究[學位論文]. 北京: 北京科技大學, 2015
    [22] Xiao J K, Xiao S X, Chen J, et al. Wear mechanism of Cu-based brake pad for high-speed train braking at speed of 380 km/h. Tribol Int, 2020, 150: 106357 doi: 10.1016/j.triboint.2020.106357
    [23] Gultekin D, Uysal M, Aslan S, et al. The effects of applied load on the coefficient of friction in Cu-MMC brake pad/Al–SiCp MMC brake disc system. Wear, 2010, 270(1-2): 73 doi: 10.1016/j.wear.2010.09.001
    [24] Fouvry S, Liskiewicz T, Kapsa P, et al. An energy description of wear mechanisms and its applications to oscillating sliding contacts. Wear, 2003, 255(1-6): 287 doi: 10.1016/S0043-1648(03)00117-0
    [25] Rodrigues A C P, ?sterle W, Gradt T, et al. Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite. Tribol Int, 2017, 110: 103 doi: 10.1016/j.triboint.2017.02.014
    [26] Su L L, Gao F, Han X M, et al. Effect of copper powder third body on tribological property of copper-based friction materials. Tribol Int, 2015, 90: 420 doi: 10.1016/j.triboint.2015.05.003
    [27] Rodrigues A C P, Yonamine T, Albertin E, et al. Effect of Cu particles as an interfacial media addition on the friction coefficient and interface microstructure during (steel/steel) pin on disc tribotest. Wear, 2015, 330-331: 70 doi: 10.1016/j.wear.2015.02.006
  • 加載中
圖(11) / 表(2)
計量
  • 文章訪問數:  700
  • HTML全文瀏覽量:  285
  • PDF下載量:  79
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-20
  • 網絡出版日期:  2022-02-28
  • 刊出日期:  2023-03-01

目錄

    /

    返回文章
    返回