Development and application of intermixed length and composition variation model in continuous slab casting processes during a grade transition
-
摘要: 基于建立的連鑄中間包及結晶器內鋼液混合過程的物理模型,開發了板坯連鑄異鋼種連澆過程混澆坯長度及成分變化模型。以某鋼廠單流板坯連鑄機220 mm×1560 mm斷面Q235與Q335Ti鋼的混澆過程為研究對象,采用水模型試驗結合數值模擬確定模型的關鍵參數,并通過開展現場試驗對混澆坯取樣驗證模型的準確性。結果證明:混澆坯成分取樣與模型預測的成分偏差小于5%,且模型預測的混澆坯長度與人工確定的一致。故采用該模型可跟蹤不同混澆工況下中間包內及鑄流上鋼液的混合行為,準確預測混澆坯的長度以及成分變化規律。采用該模型研究了拉速及中間包內剩余鋼液質量對混交坯長度及不同澆注長度鑄坯C元素質量分數變化的影響規律。發現當拉速保持不變時,中間包內剩余鋼液越多,混澆坯越長;當中間包內剩余鋼液質量保持不變時,拉速越大混澆坯越短。相比而言,中間包內剩余鋼液質量比拉速對混澆坯長度的影響更大。另外當拉速不變時,隨著中間包內剩余鋼液質量的增加,C元素質量分數由0.16%變化到0.18%的速率減慢;當中間包內剩余鋼液質量不變時,隨著拉速的增加,C元素質量分數由0.16%變化到0.18%的速率增加。因此異鋼種連澆過程,適當提高拉速以及減少中間包內剩余鋼液質量,可有效減少混澆坯長度,成分變化速率降低。Abstract: Based on a developed physical model during the mixing process in the tundish and the liquid pool of the strand, intermixed length and composition variation model have been established during steel grade changes in the continuous slab casting processes. The research object was the mixing process in the single-strand slab caster during steel grade changes of Q235 and Q335Ti steel with 220 mm × 1560 mm section. Key parameters of the model were determined using the water model test and numerical simulation, and the model was verified through plant tests, which were performed on the slab caster during the grade transition period of continuous casting. Real grade intermixed slabs were produced, and composition distributions were measured and compared. The carbon composition and the length of the intermixed slab predicted using the model were found to be in good agreement with the experimental data. Mixed behaviors in the tundish and strand were tracked using the model under various mixing conditions. In addition, the length and the composition change law of the intermixed slab can be precisely predicted. The effect of casting speed and the remaining molten steel in the tundish on length and the composition change law of the intermixed slab were studied by the model. As the casting speed remains unchanged, the intermixed-slab length increases with more remaining molten steel in the tundish. While the mass of remaining molten steel in the tundish keeps unchanged, the intermixed slab length decreases with more casting speed. In comparison, the remaining molten steel in the tundish has a larger effect on the intermixed slab length than the casting speed. As the mass of the remaining molten steel in the tundish increases with constant casting speed, the rate at which the mass fraction of C changes from 0.16% to 0.18% slows down; While the mass of remaining molten steel in the tundish keeps unchanged, the rate at which the mass fraction of C changes from 0.16% to 0.18% accelerates with an increase in the casting speed. Reducing the mass of the residual molten steel in the tundish and increasing the casting speed in the strand is beneficial for the reduction in the length of the intermixed slab and element composition variation rate. Moreover, the strategy of lowering the liquid level in the tundish and increasing the casting speed simultaneously can be adopted to decrease the intermixed slab length to the greatest extent.
-
圖 10 模型計算的拉速為1.2 m?min?1時不同中間包內剩余鋼液質量下鑄流上不同澆注長度鑄坯C元素質量分數的變化。(a)15 t;(b)20 t;(c)25 t;(d)30 t
Figure 10. Chang of C content in the corresponding slab of different casting lengths with a casting speed of 1.2 m?min?1 under different masss of residual molten steel in the tundish: (a) 15 t; (b) 20 t; (c) 25 t; (d) 30 t
圖 11 模型計算的中間包內剩余鋼液質量為25 t時不同拉速下鑄流上不同澆注長度鑄坯對應的混合率。(a)1.1 m?min?1;(b)1.2 m?min?1;(c)1.3 m?min?1;(d)1.4 m?min?1
Figure 11. Mixing rate in the corresponding slab of different casting lengths with 25 t mass of residual molten steel in tundish under different casting speeds: (a) 1.1 m?min?1; (b) 1.2 m?min?1; (c) 1.3 m?min?1; (d) 1.4 m?min?1
圖 12 模型計算的中間包內剩余鋼液質量為25 t時不同拉速下鑄流上不同澆注長度鑄坯C元素質量分數的變化。(a)1.1 m?min?1;(b)1.2 m?min?1;(c)1.3 m?min?1;(d)1.4 m?min?1
Figure 12. Carbon element composition change in the corresponding slab of different casting lengths with 25 t mass of residual molten steel in the tundish under different casting speeds: (a) 1.1 m?min?1; (b) 1.2 m?min?1; (c) 1.3 m?min?1; (d) 1.4 m?min?1
表 1 連鑄機的主要技術參數
Table 1. Key technical parameters of a slab caster
Parameter Value Type of the caster Straight-arc type Strand of the caster 1 Metallurgical length of the caster/m 36 Section size of slab/(mm×mm) 220×1560 Effective length of mold copper plate/m 1 Type of submerged nozzle Two side outlet Type of tundish Rectangle flow control device Working capacity of tundish/t 32 表 2 混澆鋼種及其鋼包內的成分(質量分數)
Table 2. Element composition in ladle during continuous casting grade transitio
% Steel grade C Si Mn P S Ti Q235 0.18 0.10 0.30 0.019 0.0061 0 Q355Ti 0.16 0.10 0.35 0.018 0.0054 0.0514 www.77susu.com -
參考文獻
[1] Chen W L. Study on intermixing slab model in sequence casting of different steel grades. Wide Heavy Plate, 2012, 18(1): 12 doi: 10.3969/j.issn.1009-7864.2012.01.004陳文龍. 連鑄異鋼種連澆過渡坯模型的研究. 寬厚板, 2012, 18(1):12 doi: 10.3969/j.issn.1009-7864.2012.01.004 [2] Li D M, Dong F, Fu Y. Production practice of optimizing different steel grade continuous casting. Sci Technol Baotou Steel, 2016, 42(6): 28 doi: 10.3969/j.issn.1009-5438.2016.06.009李東明, 董方, 付岳. 優化異鋼種連續澆注的生產實踐. 包鋼科技, 2016, 42(6):28 doi: 10.3969/j.issn.1009-5438.2016.06.009 [3] Dong J G, Chen X D, Zhang Y J, et al. Practice of improving tundish continuous casting number. Continuous Cast, 2017, 42(6): 5董金剛, 陳向東, 章遠杰, 等. 提高中間包連澆爐數的實踐. 連鑄, 2017, 42(6):5 [4] Fei P, Min Y, Liu C J, et al. Effect of continuous casting speed on mold surface flow and the related near-surface distribution of non-metallic inclusions. Int J Miner Metall Mater, 2019, 26(2): 186 doi: 10.1007/s12613-019-1723-y [5] Zhang Y M, Sun Y H, Bai X F, et al. Three-dimensional morphology and thermodynamic calculation of inclusions in stainless steel. Chin J Eng, 2020, 42(Suppl 1): 14張一民, 孫彥輝, 白雪峰, 等. 不銹鋼中夾雜物三維形貌及其熱力學計算. 工程科學學報, 2020, 42(增刊1): 14 [6] Li J Y, Cheng G G, Li L Y, et al. Formation mechanism of non-metallic inclusions in 202 stainless steel. Chin J Eng, 2019, 41(12): 1567李璟宇, 成國光, 李六一, 等. 202不銹鋼中非金屬夾雜物的形成機理. 工程科學學報, 2019, 41(12):1567 [7] Chen K L, Wang D Y, Qu T P, et al. Physical and numerical simulation of the coalescence of liquid inclusion particles in molten steel. Chin J Eng, 2019, 41(10): 1280陳開來, 王德永, 屈天鵬, 等. 鋼中液態夾雜物聚并行為的數學物理模擬. 工程科學學報, 2019, 41(10):1280 [8] Bai X F, Sun Y H, Chen R M, et al. Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels. Int J Miner Metall Mater, 2019, 26(5): 573 doi: 10.1007/s12613-019-1766-0 [9] Sun Z X, Zhao Z W, Jin Y L. Water modeling experiment on continuous casting grade transition process. J Inn Mong Univ Sci Technol, 2010, 29(3): 210 doi: 10.3969/j.issn.2095-2295.2010.03.005孫增曉, 趙增武, 金永麗. 異鋼種連澆過程的水模研究. 內蒙古科技大學學報, 2010, 29(3):210 doi: 10.3969/j.issn.2095-2295.2010.03.005 [10] Bi J H, Tang P, Wen G H, et al. Water modeling experiment on factors of casting process to intermixed slab length during grade transition. Iron Steel Vanadium Titanium, 2012, 33(5): 46 doi: 10.7513/j.issn.1004-7638.2012.05.010畢經漢, 唐萍, 文光華, 等. 異鋼種連澆工藝參數對交接坯長度的影響. 鋼鐵釩鈦, 2012, 33(5):46 doi: 10.7513/j.issn.1004-7638.2012.05.010 [11] Bi J H, Tang P, Wen G H, et al. Prediction model of intermixing slab length and location in continuous grade transition casting process. Chin J Process Eng, 2012, 12(2): 271畢經漢, 唐萍, 文光華, 等. 異鋼種連澆交接坯長度與位置預測模型. 過程工程學報, 2012, 12(2):271 [12] Li T, Chang L Z, Cong J Q, et al. Influence of different steel grade continuous casting process parameters on the transfer slab length. Continuous Cast, 2016, 41(2): 13李濤, 常立忠, 從俊強, 等. 異鋼種連澆工藝參數對交接坯長度的影響. 連鑄, 2016, 41(2):13 [13] Cwudziński A. Physical and mathematical simulation of liquid steel mixing zone in one strand continuous casting tundish. Int J Cast Met Res, 2017, 30(1): 50 doi: 10.1080/13640461.2016.1234223 [14] Mazumdar D. Review, analysis, and modeling of continuous casting tundish systems. Steel Res Int, 2019, 90(4): 1800279 doi: 10.1002/srin.201800279 [15] Siddiqui M I H, Kim M H. Two-phase numerical modeling of grade intermixing in a steelmaking tundish. Metals, 2019, 9(1): 40 doi: 10.3390/met9010040 [16] Bul’ko B, Molnár M, Demeter P, et al. Study of the influence of intermix conditions on steel cleanliness. Metals, 2018, 8(10): 852 doi: 10.3390/met8100852 [17] Lin L, Zeng J Q. Consideration of green intelligent steel processes and narrow window stability control technology on steel quality. Int J Miner Metall Mater, 2021, 28(8): 1264 doi: 10.1007/s12613-020-2246-2 [18] Yin R Y. Review on the study of metallurgical process engineering. Int J Miner Metall Mater, 2021, 28(8): 1253 doi: 10.1007/s12613-020-2220-z [19] Wang Y, Zhao M J, Yang S F, et al. Physical simulation of tundish heated by plasma. Chin J Eng, 2020, 42(Suppl 1): 68王勇, 趙夢靜, 楊樹峰, 等. 中間包等離子加熱的物理模擬. 工程科學學報, 2020, 42(增刊1): 68 [20] Wang R D, Su W, Cui H, et al. Optimization of the tundish flow field based on F-curve. Chin J Eng, 2020, 42(Suppl 1): 95王汝棟, 蘇旺, 崔衡, 等. 基于F曲線的中間包流場優化. 工程科學學報, 2020, 42(增刊1): 95 [21] Ahn J H, Yoon J K, Lee J E. Analysis of mixed grade transition in continuous thin slab casting with EMBR. Met Mater Int, 2002, 8(3): 271 doi: 10.1007/BF03186096 [22] Huang X, Thomas B G. Modeling of steel grade transition in continuous slab casting processes. Metall Trans B, 1993, 24(2): 379 doi: 10.1007/BF02659140 [23] Cho M J, Kim S J. A practical model for predicting intermixed zone during grade transition. ISIJ Int, 2010, 50(8): 1175 doi: 10.2355/isijinternational.50.1175 [24] Sui Y F, Chen J, Liu P, et al. Research and model prediction on composition change of continuous casting intermixing slab. Continuous Cast, 2019, 44(4): 62隋亞飛, 陳杰, 劉彭, 等. 連鑄混澆坯成分變化規律及模型的研究. 連鑄, 2019, 44(4):62 [25] Li J. Development and application of control model for intermixed slab of steel grade transition in continuous casting. Metall Mater, 2019, 39(3): 44 doi: 10.3969/j.issn.1674-5183.2019.03.027李杰. 連鑄異鋼種混澆坯控制模型的開發與應用. 冶金與材料, 2019, 39(3):44 doi: 10.3969/j.issn.1674-5183.2019.03.027 [26] Chattopadhyay K, Isac M, Guthrie R I L. Modelling of non-isothermal melt flows in a four strand delta shaped billet caster tundish validated by water model experiments. ISIJ Int, 2012, 52(11): 2026 doi: 10.2355/isijinternational.52.2026 [27] Jeong M, Choi C, Ha M Y, et al. Numerical simulation of continuous casting process of different steel grades considering solidification and mixing of different steel grades. Met Mater Int, 2015, 21(2): 303 doi: 10.1007/s12540-015-4199-y [28] Siddiqui M I H, Kim M H. Optimization of flow control devices to minimize the grade mixing in steelmaking tundish. J Mech Sci Technol, 2018, 32(7): 3213 doi: 10.1007/s12206-018-0624-8 -