<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

高溫熔鹽體系惰性陽極與月壤電解制氧技術

寇明銀 王明涌 焦樹強

寇明銀, 王明涌, 焦樹強. 高溫熔鹽體系惰性陽極與月壤電解制氧技術[J]. 工程科學學報, 2021, 43(12): 1618-1629. doi: 10.13374/j.issn2095-9389.2021.10.08.001
引用本文: 寇明銀, 王明涌, 焦樹強. 高溫熔鹽體系惰性陽極與月壤電解制氧技術[J]. 工程科學學報, 2021, 43(12): 1618-1629. doi: 10.13374/j.issn2095-9389.2021.10.08.001
KOU Ming-yin, WANG Ming-yong, JIAO Shu-qiang. Inert anode in a high-temperature molten salt system and oxygen generation by moon regolith electrolysis[J]. Chinese Journal of Engineering, 2021, 43(12): 1618-1629. doi: 10.13374/j.issn2095-9389.2021.10.08.001
Citation: KOU Ming-yin, WANG Ming-yong, JIAO Shu-qiang. Inert anode in a high-temperature molten salt system and oxygen generation by moon regolith electrolysis[J]. Chinese Journal of Engineering, 2021, 43(12): 1618-1629. doi: 10.13374/j.issn2095-9389.2021.10.08.001

高溫熔鹽體系惰性陽極與月壤電解制氧技術

doi: 10.13374/j.issn2095-9389.2021.10.08.001
基金項目: 國家自然科學基金資助項目(51725401)
詳細信息
    通訊作者:

    E-mail: sjiao@ustb.edu.cn

  • 中圖分類號: TQ151.9

Inert anode in a high-temperature molten salt system and oxygen generation by moon regolith electrolysis

More Information
  • 摘要: 目前,熔鹽電化學冶金普遍采用炭素陽極,陽極CO2產物是重要的碳排放源。若在高溫熔鹽體系中使用惰性析氧陽極,則可實現熔鹽電解過程低碳排放。因此,開發適用于熔鹽電解體系的惰性陽極至關重要,也是近年來國內外研究熱點。本文首先綜述了各種高溫熔鹽體系惰性陽極的研究進展,所涉及熔鹽體系包括:鋁電解氟化物鹽、CaCl2熔鹽、碳酸鹽和熔融氧化物等。另外,近年來月球開發利用受到廣泛關注,太陽能驅動的月壤原位熔鹽電化學制氧,將是支撐人類未來月面生存氧氣需求的重要方法之一,故惰性析氧陽極不可或缺。因此,本文也簡要綜述了基于惰性陽極的月壤電解制氧技術。

     

  • 圖  1  現代鋁電解槽剖面圖[3]

    Figure  1.  Sectional view of modern aluminum electrolysis bath[3]

    圖  2  電解前后惰性陽極形貌圖. (a)電解前CaRuO3;(b)電解后CaRuO3;(c)電解后CaRuxTi1–xO3;(d) 采用CaRuO3 惰性陽極的電解過程電流/氧氣隨時間變化圖[42]

    Figure  2.  Morphology images of inert anodes before and after electrolysis: (a) CaRuO3 before electrolysis; (b) CaRuO3 after electrolysis; (c) CaRuxTi1–xO3 after electrolysis; (d) current/oxygen–time profile for electrolysis using a CaRuO3 anode[42]

    圖  3  (a)100 h電解后TiB2惰性陽極橫截面EPMA (Electron–probe micro analysis)結果;(b)膜I、II和III的XRD測試;(c)TiB2陽極鈍化膜形成機理[46]

    Figure  3.  (a) Electro–probe micro analysis of TiB2 anode cross section after 100 h of electrolysis; (b) XRD tests of films I, II, and III; (c) formation mechanism of the TiB2 anode passivation film[46]

    圖  4  Ni10Cu11Fe三層膜形成示意圖[49]

    Figure  4.  Schematic of the three-layer-coated Ni10Cu11Fe anode[49]

    圖  5  熔融氧化物電解制備液態金屬和氧氣的示意圖[58]

    Figure  5.  Schematic of the molten oxide electrolysis process involved in the electrolytic decomposition of a metal oxide into liquid metal and oxygen gas[58]

    圖  6  Ir陽極在高硅氧化物(a,c)和高鈣氧化物(b,d)電解后的掃描電解圖及在高硅氧化物中恒電流電解過程中氣體出口氧氣含量隨時間變化(e)[61]

    Figure  6.  SEM observations of iridium anode after electrolysis in high silica (a, c) and high calcia (b, d) and oxygen content of outlet gas in high–silica–content slag during constant–current electrolysis (e) [61]

    圖  7  (a)Cr90Fe10的SEM圖;(b)Cr/Fe原子比EDS分析(沿圖7(a)中的虛線);(c)Cr90Fe10電解質界面光學顯微圖;(d,e)Cr90Fe10表面XRD圖,靠近基體(d)及靠近電解質(e);(f)恒電流電解過程中電壓、氧氣和氮氣含量(體積分數)隨時間的變化[62]

    Figure  7.  (a) SEM image of Cr90Fe10; (b) Cr/Fe atomic ratio EDS analysis (along the dotted line in Fig.7(a)); (c) optical micrograph of the Cr90Fe10 electrolyte interface; (d, e) XRD diagrams of the Cr90Fe10 surface, which are close to the substrate (d) and electrolyte (e); (f) variation of the cell voltage and the oxygen and the nitrogen content (volume fraction) of the process gas during constant current electrolysis [62]

    圖  8  月壤元素構成[63]

    Figure  8.  Elemental composition of moon regolith[63]

    圖  9  FFC法電解熔鹽電解制氧示意圖

    Figure  9.  Schematic of oxygen generation by FFC molten salt electrolysis

    表  1  鋁電解采用惰性陽極后的潛在優勢[5]

    Table  1.   Potential advantages of adopting an inert anode in aluminum electrolysis[5]

    Environmental ProtectionCostEnergy ConsumptionProcess/ControlSafety/Health
    ① Reduce or eliminate CO2 emissions; ② Eliminate the emissions of PFCs; ③ Eliminate the emissions of asphalt flue gas (polycyclic aromatic carbohydrates and polycyclic organics); ④ Eliminate the emissions of hydroxysulfides; ⑤ Eliminate dry coke powder and anode roasting paste dust emission; ⑥ Reduce the generation of waste lining; ⑦ Reduce HF emissions①Reduce the anode cost; ②Improve the metal quality of the product; ③Increase the space utilization rate of the electrolytic cell; ④Increase the production capacity per unit volume of the electrolytic cell; ⑤Reduce operation manpower; ⑥More flexible cell structure design①Improve the thermal efficiency of the electrolytic cell and reduce heat loss; ②Save energy consumption in the preparation of carbon anodes; ③Anode production is more energy efficient; ④Utilization in conjunction with wettable cathodes can greatly reduce electrode spacing, thereby reducing power consumption①Carbon anode production plant is eliminated; ②Anode replacement frequency is reduced; ③The bottom of the anode is relatively flat, making control of the electrode spacing convenient①Reduce anode replacement work; ②Electrolytic cell is more densely closed; ③Improve the working environment of the workshop
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xie G. Theory and Application of Molten Salt. Beijing: Metallurgical Industry Press, 1998

    謝剛. 熔融鹽理論與應用. 北京: 冶金工業出版社, 1998
    [2] Liu Y X, Li J. Modern Aluminum Electrolysis. Beijing: Metallurgical Industry Press, 2008

    劉業翔, 李劼. 現代鋁電解. 北京: 冶金工業出版社, 2008
    [3] Zhang H L, Yang S, Zhang H H, et al. Numerical simulation of alumina-mixing process with a multicomponent flow model coupled with electromagnetic forces in aluminum reduction cells. JOM, 2014, 66(7): 1210 doi: 10.1007/s11837-014-1020-1
    [4] Zhou K C, Li Z Y, Zhang L. Cermet Inert Anode for Aluminum Electrolysis. Changsha: Central South University Press, 2012

    周科朝, 李志友, 張雷. 鋁電解金屬陶瓷惰性陽極材料. 長沙: 中南大學出版社, 2012
    [5] Zhang T A, Zhu W X, Lü G Z. Aluminum Metallurgy Technology. Beijing: Science Press, 2014

    張廷安, 朱旺喜, 呂國志. 鋁冶金技術. 北京: 科學出版社, 2014
    [6] Ramsey D E, Grindstaff L I. Electrode Composition: US Patent, 4233148. 1980-11-11
    [7] Popescu A M, Constantin V. Current efficiency, corrosion and structural changes in SnO2–Sb2O3–CuO inert anodes for aluminium electrolysis. Chin J Chem Phys, 2014, 27(3): 368 doi: 10.1063/1674-0068/27/03/368-372
    [8] Gao Q. Study on the Preparation and Electrolysis of Cu–Ni–NiFe2O4 Inert Anode under Low Oxygen Partial Pressure [Dissertation]. Shenyang: Northeastern University, 2015

    高權. 低氧分壓下Cu–Ni–NiFe2O4惰性陽極的制備與電解研究[學位論文]. 沈陽: 東北大學, 2015
    [9] Augustin C O, Srinivasan L K, Srinivasan K S. Inert anodes for environmentally clean production of aluminium—Part I. Bulletin Electrochem, 1993, 9(8-10): 502
    [10] Ray S P. Inert Electrode United Compositions: US Patent, 4374050. 1983-2-15
    [11] Xi J H, Yao G C, Liu Y H. The effects of presintering temperature on microstructure and properties of inert anodes of NiFe2O4 spinel with additives TiO2, MnO2. Mater Rev, 2005, 19(10): 133 doi: 10.3321/j.issn:1005-023X.2005.10.036

    席錦會, 姚廣春, 劉宜漢. 預燒溫度對摻雜TiO2、MnO2的鎳鐵尖晶石惰性陽極微觀形貌和性能的影響. 材料導報, 2005, 19(10):133 doi: 10.3321/j.issn:1005-023X.2005.10.036
    [12] Xi J H, Xie Y J, Yao G C, et al. Effect of additive on corrosion resistance of NiFe2O4 ceramics as inert anodes. Trans Nonferrous Met Soc China, 2008, 18(2): 356 doi: 10.1016/S1003-6326(08)60062-X
    [13] Wang H, Zhou K C, Li Z Y. Microstructure and electrical properties of Nb2O5-doping NiFe2O4 ceramic. Chin J Nonferrous Met, 2013, 23(2): 410

    王昊, 周科朝, 李志友. Nb2O5摻雜NiFe2O4陶瓷材料的顯微結構和導電性能. 中國有色金屬學報, 2013, 23(2):410
    [14] Gregg J S, Frederick M S, King H L, et al. Testing of cerium oxide coated cermet anodes in a laboratory cell // Essent Read Light Met, 2016: 1094
    [15] Gregg J S, Frederick M S, Vaccaro A J, et al. Pilot cell demonstration of cerium oxide coated anodes // Light Metals, 1993: 465
    [16] Wu X X, Mao X H. Research on inert anode of aluminium electrolysis. J Guizhou Univ Technol (Nat Sci Ed), 1999, 28(5): 36

    吳賢熙, 毛小浩. 鋁電解鎳基惰性陽極的研究. 貴州工業大學學報(自然科學版), 1999, 28(5):36
    [17] Dewing E W, Rolseth S, St?en L, et al. The solubility of ZnO and ZnAl2O4 in cryolite melts. Metall Mater Trans B, 1997, 28(6): 1099 doi: 10.1007/s11663-997-0065-8
    [18] Hyrn J N. A dynamic metal anode [J/OL]. OSTI Online (1998-11-09) [2021-11-29].https://www.osti.gov/biblio/11093
    [19] Shi Z N, Xu J L, Qiu Z X, et al. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis. JOM, 2003, 55(11): 63 doi: 10.1007/s11837-003-0213-9
    [20] Yu X J. Progress in Aluminum Metallurgy. Shenyang: Northeastern University Press, 2001

    于先進. 鋁冶金進展. 沈陽: 東北大學出版社, 2001
    [21] Cao Z Q, Niu Y, Wu W T, et al. Effect of grain size on high temperature oxidation behavior of Cu–60Ni alloys. Corrsion Sci Technol Prot, 2000, 13(2): 363

    曹中秋, 牛焱, 吳維?, 等. 晶粒尺寸對Cu–60Ni合金的高溫氧化行為影響. 腐蝕科學與防護技術, 2000, 13(2):363
    [22] Zhao Z L, Niu Y. The air oxidation of Cu–15Ni–15Ag alloy at 600–700 ℃. Corrsion Sci Technol Prot, 2001, 13(4): 187 doi: 10.3969/j.issn.1002-6495.2001.04.001

    趙澤良, 牛焱. Cu–15Ni–15Ag合金在600~700 ℃空氣中的氧化. 腐蝕科學與防護技術, 2001, 13(4):187 doi: 10.3969/j.issn.1002-6495.2001.04.001
    [23] Cao Z Q, Niu Y, Wu W T. Oxidation of Cu–Cr–Ni alloys under 0.1 MPa pure O2 at 800 °C. Acta Met Sin, 2000, 36(6): 647

    曹中秋, 牛焱, 吳維?. Cu–Cr–Ni合金800 °C, 0.1 MPa純氧氣中的氧化. 金屬學報, 2000, 36(6):647
    [24] Zeng C L, Wang W, Wu W T. A study of the corrosion of Fe–Cr alloys in molten (Li–K)2CO3 at 650 ℃. Acta Met Sin, 2000, 36(6): 651 doi: 10.3321/j.issn:0412-1961.2000.06.020

    曾潮流, 王文, 吳維?. Fe–Cr合金在650 ℃熔鹽(Li–K)2CO3中的腐蝕行為. 金屬學報, 2000, 36(6):651 doi: 10.3321/j.issn:0412-1961.2000.06.020
    [25] Sekhar J A, Liu J J, Duruz J J. Stable Anodes for Aluminium Production Cells: US Patent, 5510008, 1996-4-23
    [26] Duruz J J, Nora V. Grade non–consumable anode materials // Light Metals. Warrendale, 1997: 324
    [27] Duruz J J, Nora V, Crottaz O. Cells for the Electrowinning of Aluminium Having Dimensionally Stable Metal-Based Anodes: US Patent, 6913682, 2005-7-5
    [28] Haugsrud R. On the influence of non-protective CuO on high-temperature oxidation of Cu-rich Cu–Ni based alloys. Oxid Met, 1999, 52(5-6): 427
    [29] Thinh N, Vittorio B, Curtis M, et al. Non–carbon anodes and cathode coatings for aluminium production. JOM, 2004, 56(11): 231
    [30] Shi Z N, Xu J L, Qiu Z X, et al. Anti-oxidation and anti-corrosion properties of Ni–Fe–Cu inert anodes. Chin J Nonferrous Met, 2004, 14(4): 591 doi: 10.3321/j.issn:1004-0609.2004.04.013

    石忠寧, 徐君莉, 邱竹賢, 等. Ni–Fe–Cu惰性陽極的抗氧化和耐蝕性能. 中國有色金屬學報, 2004, 14(4):591 doi: 10.3321/j.issn:1004-0609.2004.04.013
    [31] Sekhar J A, Trivedi R. Solidification microstructure evolution in the presence of inert particles. Mater Sci Eng:A, 1991, 147(1): 9 doi: 10.1016/0921-5093(91)90800-3
    [32] Blinov V, Polyakov P, Thonstad J. Behaviour of cermet inert anodes for aluminium electrolysis in a low temperature electrolyte // Eleventh International Aluminium Symposium. Norway, 2001: 123
    [33] Lorentsen O A, Thonstad J. Electrolysis and post– testing of inert cermet anodes // Light Metals. Warrendale, 2002: 457
    [34] Liu J Y, Li Z Y, Tao Y Q, et al. Phase evolution of 17(Cu–10Ni)–(NiFe2O4–10NiO) cermet inert anode during aluminum electrolysis. Trans Nonferrous Met Soc China, 2011, 21(3): 566 doi: 10.1016/S1003-6326(11)60752-8
    [35] Yu X J, Zhang G L, Qiu Z X, et al. Electrical conductivity and corrosion resistance of ZnFe2O4-based materials used as intert anode for aluminum electrolysis. J Shanghai Univ (Engl Ed), 1999, 3(3): 251 doi: 10.1007/s11741-999-0068-6
    [36] Yu X J, Qiu Z X, Jin S Z. Corrosion of zinc ferrite in NaF–AlF3–Al2O3 molten salts. J Chin Soc Corros Prot, 2000, 20(5): 275 doi: 10.3969/j.issn.1005-4537.2000.05.004

    于先進, 邱竹賢, 金松哲. ZnFe2O4基材料在NaF–AlF3–Al2O3熔鹽中的腐蝕. 中國腐蝕與防護學報, 2000, 20(5):275 doi: 10.3969/j.issn.1005-4537.2000.05.004
    [37] Du Y. TiB2 Anode Process of TiB2 in Molten Salt System [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

    杜洋. TiB2在熔鹽體系中的陽極過程[學位論文]. 北京: 北京科技大學, 2021
    [38] Yin H Y, Gao L L, Zhu H, et al. On the development of metallic inert anode for molten CaCl2–CaO System. Electrochimica Acta, 2011, 56(9): 3296 doi: 10.1016/j.electacta.2011.01.026
    [39] Sakamura Y, Kurata M, Inoue T. Electrochemical reduction of UO2 in molten CaCl2 or LiCl. J Electrochem Soc, 2006, 153(3): D31 doi: 10.1149/1.2160430
    [40] Barnett R, Kilby K T, Fray D J. Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge process. Metall Mater Trans B, 2009, 40(2): 150 doi: 10.1007/s11663-008-9219-6
    [41] Kilby K T, Jiao S Q, Fray D J. Current efficiency studies for graphite and SnO2-based anodes for the electro-deoxidation of metal oxides. Electrochimica Acta, 2010, 55(23): 7126 doi: 10.1016/j.electacta.2010.06.049
    [42] Jiao S Q, Fray D J. Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts. Metall Mater Trans B, 2010, 41(1): 74 doi: 10.1007/s11663-009-9281-8
    [43] Jiao S Q, Zhang L L, Zhu H M, et al. Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode. Electrochimica Acta, 2010, 55(23): 7016 doi: 10.1016/j.electacta.2010.06.033
    [44] Hu L W, Song Y, Ge J B, et al. Electrochemical metallurgy in CaCl2–CaO melts on the basis of TiO2·RuO2Inert anode. J Electrochem Soc, 2015, 163(3): E33
    [45] Ge J B, Zou X L, Almassi S, et al. Electrochemical production of Si without generation of CO2 based on the use of a dimensionally stable anode in molten CaCl2. Angewandte Chemie Int Ed, 2019, 58(45): 16223 doi: 10.1002/anie.201905991
    [46] Du Y, Kou M Y, Tu J G, et al. An investigation into the anodic behavior of TiB2 in a CaCl2-based molten salt. Corros Sci, 2021, 178: 109089 doi: 10.1016/j.corsci.2020.109089
    [47] Tang D Y. Studies on Technologies for Carbon Dioxide Emissions Reduction and Resource Utilization Based on Molten Salt Electrochemistry [Dissertation]. Wuhan: Wuhan University, 2014

    湯迪勇. 二氧化碳減排及資源化利用的熔鹽電化學新技術研究[學位論文]. 武漢: 武漢大學, 2014
    [48] Yin H Y, Tang D Y, Zhu H, et al. Production of iron and oxygen in molten K2CO3–Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode. Electrochem Commun, 2011, 13(12): 1521 doi: 10.1016/j.elecom.2011.10.009
    [49] Tang D Y, Zheng K Y, Yin H Y, et al. Electrochemical growth of a corrosion-resistant multi-layer scale to enable an oxygen-evolution inert anode in molten carbonate. Electrochimica Acta, 2018, 279: 250 doi: 10.1016/j.electacta.2018.05.095
    [50] Dou Y P, Tang D Y, Yin H Y, et al. Electrochemical preparation of the Fe–Ni36 Invar alloy from a mixed oxides precursor in molten carbonates. Int J Miner Metall Mater, 2020, 27(12): 1695 doi: 10.1007/s12613-020-2169-y
    [51] Tian D H, Wang M Y, Zhou Y P, et al. Ni0.36Al0.10Cu0.30Fe0.24 metallic inert anode for the electrochemical production of Fe–Ni alloy in molten K2CO3–Na2CO3. Metall Mater Trans B, 2018, 49(6): 3424
    [52] Tang D Y, Yin H Y, Mao X H, et al. Effects of applied voltage and temperature on the electrochemical production of carbon powders from CO2 in molten salt with an inert anode. Electrochimica Acta, 2013, 114: 567 doi: 10.1016/j.electacta.2013.10.109
    [53] Aiken R H. Process of Making Iron from the Ore: US Patent, 0816142, 1906-3-27
    [54] Hashimoto Y, Uriya K, Kono R. Electrowinning of titanium from its oxides, Part II. Influences of fluoride salt baths on fused–salt electrodeposition of titanium metal from titanium dioxide. Denki Kagaku, 1971, 39(12): 938
    [55] Zhang K, Jiao H D, Zhou Z G, et al. Electrochemical behavior of Fe(III) ion in CaO–MgO–SiO2–Al2O3–NaF–Fe2O3 melts at 1673 K. J Electrochem Soc, 2016, 163(13): D710 doi: 10.1149/2.1021613jes
    [56] Zhou Z G, Jiao H D, Tu J G, et al. Direct production of Fe and Fe–Ni alloy via molten oxides electrolysis. J Electrochem Soc, 2017, 164(6): E113 doi: 10.1149/2.0881706jes
    [57] Zhou Z G, Wang S, Jiao H D, et al. The feasibility of electrolytic preparation of Fe–Ni–Cr alloy in molten oxides system. J Electrochem Soc, 2017, 164(14): D964 doi: 10.1149/2.0711714jes
    [58] Xiao W, Zhu H, Yin H Y, et al. Novel molten-salt electrolysis processes towards low-carbon metallurgy. J Electrochem, 2012, 18(3): 193

    肖巍, 朱華, 尹華意, 等. 熔鹽電化學低碳冶金新技術研究. 電化學, 2012, 18(3):193
    [59] Wang D H, Xiao W. Inert anode development for high-temperature molten salts. Molten Salts Chemistry, 2013: 171
    [60] Wang D H, Gmitter A J, Sadoway D R. Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide. J Electrochem Soc, 2011, 158(6): E51 doi: 10.1149/1.3560477
    [61] Kim H, Paramore J, Allanore A, et al. Electrolysis of molten iron oxide with an iridium anode: The role of electrolyte basicity. J Electrochem Soc, 2011, 158(10): E101 doi: 10.1149/1.3623446
    [62] Allanore A, Yin L, Sadoway D R. A new anode material for oxygen evolution in molten oxide electrolysis. Nature, 2013, 497(7449): 353 doi: 10.1038/nature12134
    [63] McKay D S, Carter J L, Boles W W, et al. New lunar soil simulant // Proceedings of the 4th International Conference on Engineering, Construction and Operations in Space. New Mexico, 1994: 857
    [64] Jiao S Q, Zhu H M, Zhang L L. A New Method for In-Situ Oxygen Production Using the Soil on the Surface of the Moon: China Patent, 101956203A. 2011-01-26

    焦樹強, 朱鴻民, 張琳琳. 一種利用月球表面土壤原位制氧氣的新方法: 中國專利, 101956203A. 2011-01-26
    [65] Ouyang Z Y. Introduction to Lunar Science. Beijing: China Aerospace Press, 2005

    歐陽自遠. 月球科學概論. 北京: 中國宇航出版社, 2005
    [66] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361 doi: 10.1038/35030069
    [67] Haskin L A, Colson R O, Lindstrom D J, et al. Electrolytic smelting of lunar rock for oxygen, iron, and silicon // The Second Conference on Lunar Bases and Space Activities of the 21st Century. Washington D C, 1992: 411
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  1718
  • HTML全文瀏覽量:  428
  • PDF下載量:  116
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-10-08
  • 網絡出版日期:  2021-11-15
  • 刊出日期:  2021-12-24

目錄

    /

    返回文章
    返回