Intelligent control model of steelmaking using ferroalloy reduction and its application
-
摘要: 基于K均值聚類法對轉爐出鋼過程的合金損耗進行了研究,分析了影響合金損耗的關鍵因素,并將其分為3個聚類,得到轉爐出鋼合金損耗最低的工藝模式。在此基礎上,開發了基于PCA-BP神經網絡和混合整數線性規劃的合金減量化智能控制系統,并以某煉鋼廠為例進行了實際應用。通過對模型進行在線運行,驗證了模型的準確性和實用性。使用該模型后,提高了合金化鋼液成分準確度,減少由傳統人工經驗計算配料造成的成本浪費和成分超標等情況,優化了合金配料方案,降低了煉鋼合金化成本,不同鋼種鐵合金加入總成本降低5.95%~14.74%,平均降幅11.72%。Abstract: The steel industry is a major energy consumer in China. As an effective measure for energy saving, cost and emission reduction, and higher efficiency among enterprises, ferroalloy reduction has attracted increased attention in our work to reduce carbon dioxide emissions and realize carbon neutrality. In the steelmaking process, the chemical composition of molten steel is required to meet the target ratio to maintain certain metallurgical and mechanical properties. The chemical composition of molten steel is mainly adjusted using ferroalloys. With the development of ferroalloy smelting technology, ferroalloys of various types are developed. These ferroalloys show major gaps in cost performance and composition. Before ferroalloy addition, it is essential to determine an appropriate and cost-effective type and its amount for cost-saving purposes. However, the traditional method of offering a manually determined amount cannot meet the above requirement. Therefore, it is necessary to explore an intelligent ferroalloy addition method without human intervention. Based on the K-means clustering algorithm, this paper studied ferroalloy loss in the basic oxygen furnace (BOF) steelmaking process. The key factors affecting the alloy loss were analyzed and divided into three clusters to obtain a process model of the lowest loss amount in the BOF steelmaking process. Using this model, an intelligent control system for alloy reduction was developed. The system is based on the principal component analysis and backpropagation neural network and mixed-integer linear programming. This system was implemented in a steelmaking plant, in which the accuracy and practicability of this model were verified by running it online. This model helped improve the accuracy of alloyed steel composition and reduce the unnecessary cost and extra composition, which are frequently seen in traditional calculations with a manual experience. The ferroalloy dosing scheme is also optimized, and the alloying cost of steelmaking is reduced. The total cost of adding ferroalloys of various types is reduced by 5.95% to 14.74%, with an average reduction of 11.72%.
-
Key words:
- steelmaking /
- ferroalloy /
- reduction /
- intelligent control /
- cost
-
表 1 3聚類爐次占比及錳收得率
Table 1. 3 Clustering proportion and the manganese yield in each cluster
Cluster Manganese yield/% Proportion /% Cluster 1 88.46 23.57 Cluster2 86.56 20.71 Cluster3 87.11 55.71 表 2 合金收得率預測結果和實際收得率對比
Table 2. Comparison of the actual alloy yield and the forecast alloy yield
Number Actual alloy yield/% Forecast alloy yield/% Error/% 1 94.40 95.89 1.48 2 95.68 95.65 –0.02 3 95.08 93.83 –1.24 4 95.82 95.05 –0.76 5 95.88 95.96 0.08 6 95.66 96.28 0.62 7 96.51 95.23 –1.27 8 97.07 95.44 –1.62 表 3 工業試驗結果
Table 3. Results of the industrial test
Furnace number O2 consumption/
(m3?t–1)Tapping
temperature/℃Hot metal
ratioMn
yield/%Past average
cost/(¥·t–1)Current
cost/ (¥·t–1)Reduce
costs /(¥·t–1)Decrease
rate /%Whether the ingredients are qualified Control group 52.20 1641 0.92 86.52 198.4 — — — — 1 56.46 1585 0.77 86.60 198.4 167.5 30.9 11.68 √ 2 50.48 1581 0.77 87.03 198.4 170.1 28.3 11.67 √ 3 56.77 1589 0.78 89.31 198.4 175.2 23.2 14.24 √ 4 53.37 1581 0.78 89.37 198.4 159.9 38.4 5.95 √ 5 59.45 1531 0.91 89.65 198.4 160.5 37.9 9.27 √ 6 45.97 1582 0.78 89.66 198.4 166.3 32.1 14.03 √ 7 46.54 1571 0.76 89.80 198.4 161.8 36.6 9.82 √ 8 47.62 1584 0.92 90.25 198.4 175.1 23.3 9.24 √ 9 49.83 1583 0.92 90.26 198.4 168.4 30.0 14.74 √ 10 50.84 1575 0.77 90.35 198.4 161.1 37.3 12.70 √ 11 51.48 1582 0.78 90.58 198.4 170.8 27.6 11.46 √ 12 55.76 1571 0.78 90.64 198.4 161.1 37.3 14.06 √ 13 51.35 1569 0.8 91.10 198.4 166.5 31.8 13.52 √ www.77susu.com -
參考文獻
[1] Zhu R, Han B C, Dong K, et al. A review of carbon dioxide disposal technology in the converter steelmaking process. Int J Miner Metall Mater, 2020, 27(11): 1421 doi: 10.1007/s12613-020-2065-5 [2] Bao Y P, Zhang C J, Wang M. Situation and prospect on investigation of ferroalloy reduction during steelmaking. Chin J Eng, 2018, 40(9): 1017包燕平, 張超杰, 王敏. 煉鋼過程中合金減量化研究現狀及展望. 工程科學學報, 2018, 40(9):1017 [3] Kothari A K, Ranjan R, Singh R S, et al. A real-time ferroalloy model for the optimum ladle furnace treatment during the secondary steelmaking. Ironmak Steelmak, 2019, 46(3): 211 doi: 10.1080/03019233.2017.1368952 [4] Xing L D, Guo J L, Li X, et al. Control of TiN precipitation behavior in titanium-containing micro-alloyed steel. Mater Today Commun, 2020, 25: 101292 doi: 10.1016/j.mtcomm.2020.101292 [5] Yang L Z, Wang X Y, Wang Z D, et al. Alloy charging optimization model based on the yield dynamic libraries. J Univ Sci Technol Beijing, 2014, 36(Suppl 1): 104楊凌志, 王學義, 王志東, 等. 基于收得率動態庫的合金加料優化模型. 北京科技大學學報, 2014, 36(增刊1): 104 [6] Nath N K, Mandal K, Singh A K, et al. Ladle furnace on-line reckoner for prediction and control of steel temperature and composition. Ironmak Steelmak, 2006, 33(2): 140 doi: 10.1179/174328106X80082 [7] Han M, Xu Q, Zhao Y, et al. Calculation of alloy addition to yied-predict model BOF steel-making. Steelmaking, 2010, 26(1): 44韓敏, 徐俏, 趙耀, 等. 基于收得率預測模型的轉爐煉鋼合金加入量計算. 煉鋼, 2010, 26(1):44 [8] Han M, Xu Q. Integrated optimization model for alloy addition of basic oxygen furnace based on Particle Swarm Optimization // 2010 IEEE International Conference on Systems, Man and Cybernetics. Istanbul, 2010: 4257 [9] Geng T, Zou C D, Zhao J Q, et al. Study on cost optimization of alloy batching model in Al-killed steel. Metall Ind Autom, 2019, 43(3): 40耿濤, 鄒長東, 趙家七, 等. 鋁鎮靜鋼的成本最優化合金配料模型研究. 冶金自動化, 2019, 43(3):40 [10] Wang X, Wei S H, Qin D P, et al. Development and application of alloy minimum cost control system for steelmaking. Metall Ind Autom, 2019, 43(1): 47王星, 危尚好, 秦登平, 等. 煉鋼合金最小成本控制系統的開發及應用. 冶金自動化, 2019, 43(1):47 [11] Gong W, Jiang Z H, Zheng W, et al. Component controlling model in BOF steelmaking process. J Northeast Univ, 2002, 23(12): 1155龔偉, 姜周華, 鄭萬, 等. 轉爐冶煉過程中合金成分控制模型. 東北大學學報, 2002, 23(12):1155 [12] Xu Z. Optimal Setting of the Amount of Alloying Additions for Ladle Furnace and Its Application [Dissertation]. Shenyang: Northeastern University, 2012徐喆. 鋼包精煉爐合金添加量的優化設定與應用[學位論文]. 沈陽: 東北大學, 2012 [13] Ekmek?i ī, Yetisken Y, ?amdali ü. Mass balance modeling for electric arc furnace and ladle furnace system in steelmaking facility in Turkey. J Iron Steel Res Int, 2007, 14(5): 1 [14] Wei C X, Li J X, Zhang Y, et al. Factors affecting yield of alloy in ANS-OB ladle refining process and prevention. Steelmaking, 2003, 19(2): 26魏春新, 李紀祥, 張越, 等. 影響ANS-OB精煉合金收得率的因素及對策. 煉鋼, 2003, 19(2): 26 [15] Zhang C. Effect of ladle refining technique on yielding rate of VN alloy. Iron Steel Vanadium Titanium, 2003, 24(4): 44 doi: 10.3969/j.issn.1004-7638.2003.04.009張晨. 鋼包精煉工藝對釩氮合金收得率的影響. 鋼鐵釩鈦, 2003, 24(4):44 doi: 10.3969/j.issn.1004-7638.2003.04.009 [16] Lu S, Lu Z. A new clustering algorithm for categorical attributes. Int J Miner Metall Mater, 2000, 7(4): 318 [17] Geng Z, Liu R. Optimization research on the “deoxidation alloying” batching scheme of molten steel based on linear programming method // Materials Science, Energy Technology And Power Engineering III. Hohhot, 2019: 020070 [18] Ammar E S, Eljerbi T. On solving fuzzy rough multiobjective integer linear fractional programming problem. J Intell Fuzzy Syst, 2019, 37(5): 6499 doi: 10.3233/JIFS-182552 [19] Wang E J, Tsou C S. A simple multiple objective linear programming model on customization manufacturing for metal steel making effectiveness // 2014 IEEE International Conference on Industrial Engineering and Engineering Management. Selangor, 2014: 1285 [20] Chen X D, Bao K J, Du B. The application of fuzzy linear programming in LD converter ferroalloy model control system. J Jiangsu Univ Sci Technol, 2002, 23(1): 66陳曉東, 鮑可進, 杜斌. 模糊線性規劃在轉爐合金模型中的應用. 江蘇大學學報(自然科學版), 2002, 23(1):66 [21] Xu J. The Optimal Control of LF Alloying Component Based on Fuzzy Programming [Dissertation]. Shenyang: Northeastern University, 2012徐健. 基于模糊規劃的LF爐合金優化控制[學位論文]. 沈陽: 東北大學, 2012 [22] Yan B J, Zhang J L, Guo H W, et al. High-temperature performance prediction of iron ore fines and the ore-blending programming problem in sintering. Int J Miner Metall Mater, 2014, 21(8): 741 doi: 10.1007/s12613-014-0966-x [23] Vujic S, Benovic T, Miljanovic I, et al. Fuzzy linear model for production optimization of mining systems with multiple entities. Int J Miner Metall Mater, 2011, 18(6): 633 doi: 10.1007/s12613-011-0488-8 [24] Xu Z, Mao Z Z. Analysis and prediction of influencing factor on element recovery in ladle furnace. Iron Steel, 2012, 47(3): 34徐喆, 毛志忠. 鋼包精煉爐元素收得率的影響因素分析及預報. 鋼鐵, 2012, 47(3):34 [25] Zhang S Y, Bao Y P, Zhang C J, et al. Prediction model of aluminum consumption with BP neural networks in IF steel production. Chin J Eng, 2017, 39(4): 511張思源, 包燕平, 張超杰, 等. BP神經網絡IF鋼鋁耗的預測模型. 工程科學學報, 2017, 39(4):511 [26] Yu P, Zhan D P, Jiang Z H, et al. Development of a terminal composition prediction model for steel refing with ladle furnace. J Mater Metall, 2006, 5(1): 20 doi: 10.3969/j.issn.1671-6620.2006.01.005于鵬, 戰東平, 姜周華, 等. LF精煉終點成分預報模型開發. 材料與冶金學報, 2006, 5(1):20 doi: 10.3969/j.issn.1671-6620.2006.01.005 [27] Cui K, Jing X. Research on prediction model of geotechnical parameters based on BP neural network. Neural Comput Appl, 2019, 31(12): 8205 doi: 10.1007/s00521-018-3902-6 [28] Liu X, Wen B, Wang X H, et al. Prediction of hot ductility of low-carbon steels based on BP network. Int J Miner Metall Mater, 2001, 08(03): 182 -