Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation
-
摘要: 部分選礦循環水中含一定量的高分散性懸浮顆粒,僅依靠簡單濃縮沉降難以澄清,無法達到回用要求。針對這一難題,提出了一種選礦循環水固體懸浮物澄清裝置。為優化裝置的結構參數與運行參數,建立了選礦循環水深度澄清裝置的二維物理模型,基于計算流體力學(CFD)的方法,選用Mixture和RNG k?ε 模型對裝置主要的結構參數與運行參數展開了數值模擬研究。研究發現適當降低水力循環區噴嘴長度,增加喉管與噴嘴管徑比、顆粒沉降區開口尺寸、裝置直徑等結構,能夠降低顆粒沉降區平均湍動能,由于湍動能為單位質量流體由于紊流脈動所具有的動能,故降低了顆粒沉降區流場的紊流程度,增加了水流的穩定性,提高了裝置對懸浮顆粒的去除效果;同時發現降低入口流速、增加懸浮顆粒粒徑有助于提高懸浮物的去除率,當進水流速為0.1 m·s?1、經過混凝的懸浮顆粒形成粒徑大于100 μm時,裝置對選礦循環水中的懸浮顆粒去除效果顯著。Abstract: Some beneficiation circulating water contains excess highly dispersed suspended particles, which are difficult to clarify only by simple concentration and sedimentation and cannot meet the requirements of reuse. To solve this problem, a clarification device was developed for removing the solid suspended matter from beneficiation circulating water, which consists of a hydraulic circulation area and a particle sedimentation area and integrating mixing, flocculation, and sedimentation. The flow field inside the gadget has a big influence on how well it works. The structural and operating parameters of the gadget were improved using the computational fluid dynamics approach to increase the device’s performance. A two-dimensional physical model of the deep clarification device for beneficiation circulating water was established. Numerical simulation research on its main structural parameters and operating parameters were conducted by using software Fluent and choosing the Mixture multiphase flow model and RNG k?ε turbulence model. The effects of feed water nozzle length, throat to nozzle diameter ratio, sludge settling area opening size, and device diameter on the internal flow field were investigated. The average turbulent kinetic energy in the sludge settling zone can be reduced by reducing the length of the nozzle in the hydraulic circulation region, increasing the ratio of the throat to nozzle diameter and the opening size of the sludge settling area, and increasing the diameter of the device. Due to the fact that the turbulent kinetic energy is the kinetic energy of fluid produced by turbulent pulsation, the turbulent degree of the flow field in the sludge settling area is reduced, the effect of turbulent flow in the flow field on particle settling is weakened, and the removal effect of the device on suspended particles is improved. Simultaneously, it is found that at the same suspended solids concentration, reducing the inlet flow rate or increasing the suspended particle size helps to improve the removal rate of suspended solids. When the inlet flow rate is 0.1 m·s-1 and the coagulated suspended particles form particles with particle size more than 100 μm, the removal effect of slime particles in beneficiation circulating water is remarkable.
-
表 1 裝置主要結構尺寸
Table 1. Main structure size of the device
mm H D h1 h2 h3 h4 h5 h6 d1 1220 500 155 450 440 60 190 95 25 d2 d3 L L1 L2 L3 L4 α β 50 380 70 80 15 60 50 140o 150o 表 2 裝置運行參數對固體懸浮顆粒去除率的影響
Table 2. Effect of operation parameters on the removal rate of suspended solids
Inlet velocity/(m·s?1) Suspended particle size/μm η/% 0.1 60 25.11 75 30.26 100 60.98 120 80.36 0.12 60 18.3 75 24.13 100 45.96 120 70.46 0.15 60 17.16 75 18.41 100 26.11 120 46.18 0.18 60 11.54 75 15.6 100 23.6 120 29.1 www.77susu.com -
參考文獻
[1] Chen W M, Wu S M, Lei Y L, et al. China's water footprint by Province, and inter-provincial transfer of virtual water. Ecol Indic, 2017, 74: 321 doi: 10.1016/j.ecolind.2016.11.037 [2] Zhou S J, Deng R J, Hursthouse A. Risk assessment of potentially toxic elements pollution from mineral processing steps at xikuangshan antimony plant, Hunan, China. Processes, 2019, 8(1): 29 doi: 10.3390/pr8010029 [3] Yang X L, Bu X N, Xie G Y, et al. A comparative study on the influence of mono, di, and trivalent cations on the chalcopyrite and pyrite flotation. J Mater Res Technol, 2021, 11: 1112 doi: 10.1016/j.jmrt.2021.01.086 [4] Bicak O, Ozturk Y, Ozdemir E, et al. Modelling effects of dissolved ions in process water on flotation performance. Miner Eng, 2018, 128: 84 doi: 10.1016/j.mineng.2018.08.031 [5] Castillo C, Ihle C F, Jeldres R I. Chemometric optimisation of a copper sulphide tailings flocculation process in the presence of clays. Minerals, 2019, 9(10): 582 doi: 10.3390/min9100582 [6] Chen Y F, Fan R, An D F, et al. Water softening by induced crystallization in fluidized bed. J Environ Sci, 2016, 50: 109 doi: 10.1016/j.jes.2016.08.014 [7] Zubkova O, Alexeev A, Polyanskiy A, et al. Complex processing of saponite waste from a diamond-mining enterprise. Appl Sci, 2021, 11(14): 6615 doi: 10.3390/app11146615 [8] Liang G Q, Zhao Q, Liu B, et al. Treatment and reuse of process water with high suspended solids in low-grade iron ore dressing. J Clean Prod, 2021, 278: 123493 doi: 10.1016/j.jclepro.2020.123493 [9] Xu S, Zhou X L, Liu X C, et al. Development process, classification and high efficiency modification status of the thickener. Met Mine, 2021(5): 167徐帥, 周興龍, 劉肖楚, 等. 濃密機發展歷程、分類及其高效化改進研究現狀. 金屬礦山, 2021(5):167 [10] Yang B D, Xie J Y, Li P. Research on mechanism of high efficiency thickener. Nonferrous Met (Miner Process Sect) , 2011(5): 38楊保東, 謝紀元, 李鵬. 高效濃密機機理研究. 有色金屬(選礦部分), 2011(5):38 [11] Chen Q L, Li C J, Yang Y. Analysis on technical characteristics of ?53 m center drive automatic rake lifting high efficiency thickener. Mod Min, 2009, 25(6): 130 doi: 10.3969/j.issn.1674-6082.2009.06.048陳慶來, 李從軍, 楊勇. ?53 m中心傳動自動提耙高效濃縮機技術特點分析. 現代礦業, 2009, 25(6):130 doi: 10.3969/j.issn.1674-6082.2009.06.048 [12] Xie D D, Tong X, Xie X, et al. The application and development of thickener in mineral processing technology. Conserv Util Miner Resour, 2015(2): 73謝丹丹, 童雄, 謝賢, 等. 濃密機在選礦中的應用現狀及研究進展. 礦產保護與利用, 2015(2):73 [13] Xu Y R, Ban X J, Wang X K, et al. Simulations of silicone oil filling for use in retinal detachment surgery. Chin J Eng, 2021, 43(9): 1233徐衍睿, 班曉娟, 王笑琨, 等. 面向視網膜脫離手術的硅油填充模擬. 工程科學學報, 2021, 43(9):1233 [14] Cui Y, Ravnik J, Steinmann P, et al. Settling characteristics of nonspherical porous sludge flocs with nonhomogeneous mass distribution. Water Res, 2019, 158: 159 doi: 10.1016/j.watres.2019.04.017 [15] Gao H W, Stenstrom M K. Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review. Water Environ Res, 2020, 92(6): 796 doi: 10.1002/wer.1279 [16] Shah M T, Parmar H B, Rhyne L D, et al. A novel settling tank for produced water treatment: CFD simulations and PIV experiments. J Petroleum Sci Eng, 2019, 182: 106352 doi: 10.1016/j.petrol.2019.106352 [17] Yao J J, Song L L, Liu C. Numerical simulation and structural optimization of water distribution channel between the flocculation tank and sedimentation tank with inclined plate settler. J Water Resour Water Eng, 2020, 31(5): 120姚娟娟, 宋莉莉, 劉存. 斜板沉淀池前配水渠的數值模擬及結構優化. 水資源與水工程學報, 2020, 31(5):120 [18] Wei W L, Hu J J, Wang C Z, et al. Numerical simulation for the influence of outlet location on the hydraulic characteristic in a radical settling tank. Chin J Appl Mech, 2021, 38(2): 670魏文禮, 胡嘉冀, 王長洲, 等. 輻流式沉淀池出口位置優化數值模擬研究. 應用力學學報, 2021, 38(2):670 [19] Lan B, Xu J, Liu Z C, et al. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds. Ciesc J, 2021, 72(1): 521蘭斌, 徐驥, 劉志成, 等. 連續操作密相流化床顆粒停留時間分布特性模擬放大研究. 化工學報, 2021, 72(1):521 [20] Liu Y L, Zhang P, Wei W L, et al. Numerical simulation of mechanical property of solid-liquid two-phase turbulent flow in a secondary sedimentation tank of radial flow. J Water Resour Water Eng, 2013, 24(4): 25劉玉玲, 張沛, 魏文禮, 等. 輻流式沉淀池液固兩相流力學特性三維數值模擬. 水資源與水工程學報, 2013, 24(4):25 [21] Yu Q H, Mei Z Y, Bai M Q, et al. Cooling performance improvement of impingement hybrid synthetic jets in a confined space with the aid of a fluid diode. Appl Therm Eng, 2019, 157: 113749 doi: 10.1016/j.applthermaleng.2019.113749 [22] Behrangi F, Banihashemi M A, Namin M M, et al. A new approach to solve mixture multi-phase flow model using time splitting projection method. Prog Comput Fluid Dyn Int J, 2019, 19(3): 160 doi: 10.1504/PCFD.2019.099595 [23] Hnaien N, Marzouk S, Aissia H B, et al. Numerical investigation of velocity ratio effect in combined wall and offset jet flows. J Hydrodyn, 2018, 30(6): 1105 doi: 10.1007/s42241-018-0136-0 [24] Siswantara A I, Budiarso, Darmawan S. Investigation of inverse-turbulent-Prandtl number with four RNG k?ε turbulence models on compressor discharge pipe of bioenergy micro gas turbine. Appl Mech Mater, 2016, 819: 392 doi: 10.4028/www.scientific.net/AMM.819.392 [25] Tarpagkou R, Pantokratoras A. The influence of lamellar settler in sedimentation tanks for potable water treatment—A computational fluid dynamic study. Powder Technol, 2014, 268: 139 doi: 10.1016/j.powtec.2014.08.030 [26] Tan L X, Tang M, Xu C H. Three-dimensional numerical simulations of the effects of slanting plates in vertical flow desilting tank. J Hydroelectr Eng, 2018, 37(10): 86 doi: 10.11660/slfdxb.20181010譚立新, 唐敏, 徐長賀. 斜板對豎流式沉淀池影響的三維數值模擬. 水力發電學報, 2018, 37(10):86 doi: 10.11660/slfdxb.20181010 [27] Shahrokhi M, Rostami F, Md Said M A, et al. The effect of number of baffles on the improvement efficiency of primary sedimentation tanks. Appl Math Model, 2012, 36(8): 3725 doi: 10.1016/j.apm.2011.11.001 [28] Goula A M, Kostoglou M, Karapantsios T D, et al. A CFD methodology for the design of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle. Chem Eng J, 2008, 140(1-3): 110 doi: 10.1016/j.cej.2007.09.022 -