<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

壓下對重軌鋼大方坯內裂紋敏感性的影響

馬海濤 張炯明 尹延斌

馬海濤, 張炯明, 尹延斌. 壓下對重軌鋼大方坯內裂紋敏感性的影響[J]. 工程科學學報, 2021, 43(12): 1679-1688. doi: 10.13374/j.issn2095-9389.2021.09.29.003
引用本文: 馬海濤, 張炯明, 尹延斌. 壓下對重軌鋼大方坯內裂紋敏感性的影響[J]. 工程科學學報, 2021, 43(12): 1679-1688. doi: 10.13374/j.issn2095-9389.2021.09.29.003
MA Hai-tao, ZHANG Jiong-ming, YIN Yan-bin. Influence of the soft reduction process on the sensitivity of the inner crack in heavy rail steel bloom[J]. Chinese Journal of Engineering, 2021, 43(12): 1679-1688. doi: 10.13374/j.issn2095-9389.2021.09.29.003
Citation: MA Hai-tao, ZHANG Jiong-ming, YIN Yan-bin. Influence of the soft reduction process on the sensitivity of the inner crack in heavy rail steel bloom[J]. Chinese Journal of Engineering, 2021, 43(12): 1679-1688. doi: 10.13374/j.issn2095-9389.2021.09.29.003

壓下對重軌鋼大方坯內裂紋敏感性的影響

doi: 10.13374/j.issn2095-9389.2021.09.29.003
基金項目: 國家自然科學基金資助項目(51834002);中國博士后科學基金資助項目(2021M690371)
詳細信息
    通訊作者:

    E-mail: jmz2203@sina.com

  • 中圖分類號: TG142.71

Influence of the soft reduction process on the sensitivity of the inner crack in heavy rail steel bloom

More Information
  • 摘要: 為研究壓下對連鑄坯內部裂紋產生的影響,利用ABAQUS有限元軟件建立了230 mm×280 mm斷面大方坯壓下數學模型。通過壓下模型對重軌鋼連鑄坯壓下過程進行熱力耦合模擬計算,對壓下過程中產生的內部裂紋進行了預測。首先,對連鑄坯不同中心固相率為0.3~0.7的溫度場進行計算;然后,利用壓下模型計算了連鑄坯中心固相率0.3~0.7時凝固前沿的等效塑性應變。研究結果表明,在連鑄坯中心固相率為0.3~0.7的位置處分別施加7 mm壓下量進行壓下,連鑄坯凝固前沿等效塑性應變未超過臨界等效塑性應變(0.4%),連鑄坯未出現內裂紋;同時,對連鑄坯在中心固相率為0.6位置處進行了不同壓下量的研究,研究結果表明,當連鑄坯壓下量超過7 mm時,凝固前沿的等效塑性應變超過臨界塑性應變(0.4%),連鑄坯出現內裂紋,并且壓下量越大,連鑄坯內裂紋越嚴重。同時,工業試驗結果與模型計算結果基本吻合,驗證了模型計算的準確性。

     

  • 圖  1  大方坯壓下有限元模型

    Figure  1.  Reduction finite-element model of the bloom

    圖  2  U71Mn重軌鋼物性參數。(a)熱物性參數;(b)流變應力(應變速率為0.001 s?1);(c)固相分數和液相分數

    Figure  2.  Parameters of U71Mn steel: (a) physical parameters; (b) flow-stress (strain rate is 0.001 s?1); (c) solid and liquid fraction

    圖  3  鑄坯凝固前沿溫度分布[37]

    Figure  3.  Temperature distribution at the solidification front in the bloom[37]

    圖  4  碳當量與臨界應變的關系

    Figure  4.  Relationship between the carbon equivalent and critical strain

    圖  5  不同網格數溫度場計算結果

    Figure  5.  Temperature field calculation results of different grid numbers

    圖  6  大方坯溫度分布。(a)鑄坯中心及表面溫度;(b)鑄坯液芯溫度分布

    Figure  6.  Temperature distribution in the bloom: (a) center and surface temperature of bloom; (b) temperature distribution of the bloom liquid core

    圖  7  不同鑄坯中心固相率鑄坯溫度場分布

    Figure  7.  Temperature distribution at different central solidification fractions

    圖  8  鑄坯橫截面等效塑性應變分布

    Figure  8.  Equivalent plastic strain distribution in the cross section of the bloom

    圖  9  鑄坯等效塑性應變。(a)不同固相率下等效塑性應變;(b)凝固前沿等效塑性應變

    Figure  9.  Equivalent plastic strain of the bloom at: (a) different solid fractions; (b) solidification front

    圖  10  鑄坯等效塑性應變。(a)不同壓下量等效塑性應變;(b)凝固前沿等效塑性應變

    Figure  10.  Equivalent plastic strain of the bloom (a) at different reduction amounts and (b) at the solidification front

    圖  11  試樣縱剖酸侵低倍照片。(a)取樣示意圖;(b)壓下5 mm;(c)壓下7 mm;(d)壓下8 mm;(e)壓下10 mm;(f)壓下12 mm

    Figure  11.  Acid erosion pictures of the longitudinal section sample: (a) sampling diagram; (b) reduction of 5 mm; (c) reduction of 7 mm; (d) reduction of 8 mm; (e) reduction of 10 mm; (f) reduction of 12 mm

    表  1  U71Mn鋼種的化學成分(質量分數)

    Table  1.   Chemical composition of U71Mn steel (mass fraction) %

    CSiMnPSCr
    0.70.251.150.0050.0080.08
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Cen Y D, Chen L, Dong R, et al. Effect of self-tempering on fatigue crack growth of heavy rail steel. Mater Rep, 2021, 35(12): 12136 doi: 10.11896/cldb.20050123

    岑耀東, 陳林, 董瑞, 等. 自回火對重軌鋼疲勞裂紋擴展行為的影響. 材料導報, 2021, 35(12):12136 doi: 10.11896/cldb.20050123
    [2] Li H G, Ji C, Jiang D B, et al. Formation mechanism and control of semi-micro-segregation in rail steel bloom. Iron Steel, 2021, 56(6): 59

    李紅光, 祭程, 姜東濱, 等. 重載鋼軌鋼連鑄大方坯半宏觀偏析形成機制與控制. 鋼鐵, 2021, 56(6):59
    [3] Wang Y D, Zhang L F, Zhang H J, et al. Simulation of the macrosegregation in the gear steel billet continuous casting process. Chin J Eng, 2021, 43(4): 561

    王亞棟, 張立峰, 張海杰, 等. 小方坯齒輪鋼連鑄過程中的宏觀偏析模擬. 工程科學學報, 2021, 43(4):561
    [4] Sun H, Li L, Cheng X, et al. Reduction in macrosegregation on 380 mm× 490 mm bloom caster equipped combination M+ F-EMS by optimising casting speed. Ironmaking Steelmaking, 2015, 42(6): 439 doi: 10.1179/1743281214Y.0000000247
    [5] Ayata K, Mori H, Taniguchi K, et al. Low superheat teeming with electromagnetic stirring. ISIJ Int, 1995, 35(6): 680 doi: 10.2355/isijinternational.35.680
    [6] Sun H, Li L. Application of swirling flow nozzle and investigation of superheat dissipation casting for bloom continuous casing. Ironmaking Steelmaking, 2016, 43(3): 228 doi: 10.1179/1743281215Y.0000000039
    [7] Liu H P, Xu M G, Qiu S T, et al. Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring. Metall Mater Trans B, 2012, 43(6): 1657 doi: 10.1007/s11663-012-9737-0
    [8] Ren B Z, Chen D F, Wang H D, et al. Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring. Ironmaking Steelmaking, 2015, 42(6): 401 doi: 10.1179/1743281214Y.0000000240
    [9] Wang S Q, de Toledo G A, V?limaa K, et al. Magnetohydrodynamic phenomena, fluid control and computational modeling in the continuous casting of billet and bloom. ISIJ Int, 2014, 54(10): 2273 doi: 10.2355/isijinternational.54.2273
    [10] Li S X, Wang P, Lan P, et al. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring. Chin J Eng, 2019, 41(6): 748

    李少翔, 王璞, 蘭鵬, 等. 圓坯凝固末端電磁攪拌作用下的流動與傳熱行為. 工程科學學報, 2019, 41(6):748
    [11] Domitner J, Wu M H, Kharicha A, et al. Modeling the effects of strand surface bulging and mechanical softreduction on the macrosegregation formation in steel continuous casting. Metall Mater Trans A, 2014, 45(3): 1415 doi: 10.1007/s11661-013-2060-9
    [12] Ludlow V, Normanton A, Anderson A, et al. Strategy to minimise central segregation in high carbon steel grades during billet casting. Ironmaking Steelmaking, 2005, 32(1): 68 doi: 10.1179/174328105X23978
    [13] Zhao J P, Liu L, Wang W W, et al. Effects of heavy reduction technology on internal quality of continuous casting bloom. Ironmaking Steelmaking, 2019, 46(3): 227 doi: 10.1080/03019233.2017.1366090
    [14] Ji C, Wu C H, Zhu M Y. Thermo-mechanical behavior of the continuous casting bloom in the heavy reduction process. JOM, 2016, 68(12): 3107 doi: 10.1007/s11837-016-2041-8
    [15] Li G S, Yu W, Cai Q W. Investigation of reduction pretreatment process for continuous casting. J Mater Process Technol, 2016, 227: 41 doi: 10.1016/j.jmatprotec.2015.08.005
    [16] Ji C, Luo S, Zhu M Y. Analysis and application of soft reduction amount for bloom continuous casting process. ISIJ Int, 2014, 54(3): 504 doi: 10.2355/isijinternational.54.504
    [17] Yu C H, Suzuki M, Shibata H, et al. Simulation of crack formation on solidifying steel shell in continuous casting mold. ISIJ Int, 1996, 36(Suppl): S159 doi: 10.2355/isijinternational.36.Suppl_S159
    [18] Won Y M, Kim K H, Yeo T J, et al. Effect of cooling rate on ZST, LIT and ZDT of carbon steels near melting point. ISIJ Int, 1998, 38(10): 1093 doi: 10.2355/isijinternational.38.1093
    [19] Seol D J, Won Y M, Oh K H, et al. Mechanical behavior of carbon steels in the temperature range of mushy zone. ISIJ Int, 2000, 40(4): 356 doi: 10.2355/isijinternational.40.356
    [20] Cornelissen M C M. Mathematical model for soldification of multicomponent alloys. Ironmaking Steelmaking, 1986, 13(4): 204
    [21] Yamanaka A, Nakajima K, Okamura K. Critical strain for internal crack formation in continuous casting. Ironmaking Steelmaking, 1995, 22(6): 508
    [22] Kobayashi S. Relationships of fraction solid with zero ductility and zero strength temperatures during solidification. Testu-to-Hagane, 1987, 73: S896
    [23] Nakagawa T, Umeda T, Murata J, et al. Deformation behavior during solidification of steels. ISIJ Int, 1995, 35(6): 723 doi: 10.2355/isijinternational.35.723
    [24] Kim K, Han H N, Yeo T, et al. Analysis of surface and internal cracks in continuously cast beam blank. Ironmaking Steelmaking, 1997, 24(3): 249
    [25] Wang Y C, Hu P. Research on formation of internal cracks by soft reduction in billet continuous casting. Steelmaking, 2015, 31(2): 49

    王一成, 胡鵬. 連鑄方坯輕壓下內裂紋形成研究. 煉鋼, 2015, 31(2):49
    [26] Song X. Coupled Thermo-Mechanical Model for Soft Reduction for Continuous Casting Bloom [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2018

    宋瀟. 大方坯連鑄輕壓下過程熱力耦合數值模擬研究[學位論文]. 武漢: 武漢科技大學, 2018
    [27] Li X B, Ding H, Tang Z Y, et al. Formation of internal cracks during soft reduction in rectangular bloom continuous casting. Int J Miner Metall Mater, 2012, 19(1): 21 doi: 10.1007/s12613-012-0510-9
    [28] Dong Q P, Zhang J M, Wang B, et al. Shrinkage porosity and its alleviation by heavy reduction in continuously cast strand. J Mater Process Technol, 2016, 238: 81 doi: 10.1016/j.jmatprotec.2016.07.007
    [29] Zhao J P, Liu L, Fan J W, et al. Study and application of soft reduction technology in continuous casting. Mater Rev, 2016, 30(15): 57

    趙軍普, 劉瀏, 范建文, 等. 輕壓下技術及其在連鑄中的研究與應用. 材料導報, 2016, 30(15):57
    [30] Du Y Z, Li L, Wang Q Z, et al. Analysis of slab temperature and stress under single roll heavy pressing for extra thick slab. Continuous Cast, 2021, 46(1): 47

    杜一哲, 李麗, 汪勤政, 等. 特厚板坯單輥重壓下鑄坯溫度與應力的分析. 連鑄, 2021, 46(1):47
    [31] Kelly J E, Michalek K P, O’connor T G, et al. Initial development of thermal and stress fields in continuously cast steel billets. Metall Trans A, 1988, 19(10): 2589 doi: 10.1007/BF02645486
    [32] Hu W G, Ji C, Zhu M Y. Numerical simulation of continuous casting bloom solidification end reduction process for heavy-haul railway rails. Continuous Cast, 2021, 46(4): 2

    胡文廣, 祭程, 朱苗勇. 重軌鋼連鑄大方坯凝固末端壓下過程的數值模擬. 連鑄, 2021, 46(4):2
    [33] Clyne T W, Wolf M, Kurz W. The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting. Metall Trans B, 1982, 13(2): 259 doi: 10.1007/BF02664583
    [34] Li C S, Thomas B G. Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metall Mater Trans B, 2004, 35(6): 1151 doi: 10.1007/s11663-004-0071-z
    [35] Cai Z Z, Ji C, Wang W L, et al. Study on crack sensitivity of solidified billet shell in thick and wide slab continuous casting mould // 2012 Symposium on Crack Control Technology for Continuous Casting of Micro alloyed Steel. Jiujiang, 2012: 22

    蔡兆鎮, 祭程, 王衛領, 等. 寬厚板坯連鑄結晶器內凝固坯殼裂紋敏感性研究 // 2012年微合金鋼連鑄裂紋控制技術研討會論文集. 九江, 2012: 22
    [36] Hu P, Zhang H, Zhang X Z, et al. Application of a corner chamfer to steel billets to reduce risk of internal cracking during casting with soft reduction. ISIJ Int, 2014, 54(10): 2283 doi: 10.2355/isijinternational.54.2283
    [37] Won Y M, Yeo T J, Seol D J, et al. A new criterion for internal crack formation in continuously cast steels. Metall Mater Trans B, 2000, 31(4): 779 doi: 10.1007/s11663-000-0115-y
    [38] Cai K K. The Quality Control of the Continuous Casting Billet. Beijing: Metallurgical Industry Press, 2010

    蔡開科. 連鑄坯質量控制. 北京: 冶金工業出版社, 2010
  • 加載中
圖(11) / 表(1)
計量
  • 文章訪問數:  1562
  • HTML全文瀏覽量:  305
  • PDF下載量:  50
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-29
  • 網絡出版日期:  2021-10-26
  • 刊出日期:  2021-12-24

目錄

    /

    返回文章
    返回