Research advances in multifunctional catalysts for the conversion of lignin to biomass fuels
-
摘要: 綜述了木質素加氫解聚、解聚單體加氫脫氧和單體升級為多環高價值產品等過程中所使用的多功能催化劑的研究進展,包括硫化物催化劑、貴金屬單質催化劑、非貴金屬單質和合金催化劑、磷化物催化劑等。強調了加氫催化劑(Ru、Pt、Pd、Co、Mo和Ni等)和酸催化劑(Al2O3、ZrO2、NbOPO4、沸石和介孔硅酸鹽等)在加氫裂解、加氫脫氧和(加氫)烷基化反應中的協同作用。在此基礎上總結了當前反應過程的一些難點,并對下一步的技術發展方向進行了展望。未來需要開發水熱穩定性更好、價格更加低廉的高活性催化劑,降低氫氣用量,同時考慮天然木質素的一鍋法轉化,為工業化制備生物質燃料奠定基礎。Abstract: The development of biomass fuels is of great significance for reducing excessive dependence on fossil resources and global warming. Lignin is a complex aromatic biopolymer that is abundant in nature and can be used to produce high-value biomass fuels. However, due to its complex structure, the use of lignin to produce biomass fuels needs a variety of chemical reactions and catalysts, and the intermediates and products need to be separated many times, resulting in a low yield of products. Multifunctional catalysts can catalyze two or more chemical reactions at the same time; therefore, using them can simplify the preparation process and increase the yield of products. This paper reviewed the research progress of multifunctional catalysts used in the process of lignin hydrocracking, monomer hydrodeoxygenation, and monomer upgrading to polycyclic high-value products, including sulfide catalysts, noble metal elemental catalysts, non-noble metal elemental and alloy catalysts, and phosphide catalysts. Additionally, this work emphasized the interaction between hydrogenation centers (Ru, Pt, Pd, Co, Mo, and Ni) and acid centers (Al2O3, ZrO2, NbOPO4, zeolite, and mesoporous silicate) in hydrocracking and hydrodeoxygenation. Based on these, the difficulties of the current reactions were then summarized, and the next technical developing directions were anticipated, including those of the development of biomass fuel synthesis methods with more mild reaction conditions and preparation of catalysts with higher activity, higher hydrothermal stability, and lower price. This paper hopes that new methods can reduce the amount of hydrogen, decrease the reaction temperature, and converse lignin to high-value fuels in a one-pot method. Moreover, most research on biomass fuels is still in the laboratory research stage. To realize the large-scale industrial production of biomass fuels and replace petroleum fuels, more in-depth research, perfect supporting facilities, and relevant policies and measures are needed.
-
Key words:
- lignin /
- biomass fuels /
- multifunctional catalysts /
- hydrocracking /
- hydrodeoxygenation /
- alkylation
-
圖 3 (a)Ru/Nb2O5催化木質素轉化為芳烴C?O鍵斷裂機理[14];(b)木質素在Ru/NbOPO4一鍋解聚和加氫脫氧為單環烴[30]
Figure 3. (a) Conversion process from lignin to arenes via C–O bonds cleavage over Ru/Nb2O5[14]; (b) one-pot depolymerization and hydrodeoxygenation of lignin into monocyclic aromatic hydrocarbons via both C–O and C–C bond cleavage over Ru/NbOPO4[30]
www.77susu.com -
參考文獻
[1] Xie J W, Zhang X W, Xie J J, et al. Synthesis of high-density jet fuels from biomass. Prog Chem, 2018, 30(9): 1424謝嘉維, 張香文, 謝君健, 等. 由生物質合成高密度噴氣燃料. 化學進展, 2018, 30(9):1424 [2] Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem Rev, 2006, 106(9): 4044 doi: 10.1021/cr068360d [3] Jin L L. Catalytic Conversion of Lignocellulosic Biomass into Liquid Fuels [Dissertation]. Hefei: University of Science and Technology of China, 2020晉樂樂. 催化轉化木質纖維素類生物質制備液態燃料[學位論文]. 合肥: 中國科學技術大學, 2020 [4] Wu X J, Fan X T, Xie S J, et al. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat Catal, 2018, 1(10): 772 doi: 10.1038/s41929-018-0148-8 [5] Rinaldi R, Jastrzebski R, Clough M T, et al. Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed, 2016, 55(29): 8164 doi: 10.1002/anie.201510351 [6] Jing Y, Dong L, Guo Y, et al. Chemicals from lignin: A review of catalytic conversion involving hydrogen. ChemSusChem, 2020, 13(17): 4181 doi: 10.1002/cssc.201903174 [7] Cheng F, Brewer C E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renew Sustain Energy Rev, 2017, 72: 673 doi: 10.1016/j.rser.2017.01.030 [8] Joffres B, Nguyen M T, Laurenti D, et al. Lignin hydroconversion on MoS2-based supported catalyst: Comprehensive analysis of products and reaction scheme. Appl Catal B Environ, 2016, 184: 153 doi: 10.1016/j.apcatb.2015.11.005 [9] Ma R, Hao W Y, Ma X L, et al. Catalytic ethanolysis of kraft lignin into high-value small-molecular chemicals over a nanostructured α-molybdenum carbide catalyst. Angew Chem Int Ed, 2014, 53(28): 7310 doi: 10.1002/anie.201402752 [10] Du B Y, Chen C Z, Sun Y, et al. Efficient and controllable ultrasound-assisted depolymerization of organosolv lignin catalyzed to liquid fuels by MCM-41 supported phosphotungstic acid. RSC Adv, 2020, 10(52): 31479 doi: 10.1039/D0RA05069E [11] Schutyser W, Renders T, Van den Bosch S, et al. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev, 2018, 47(3): 852 doi: 10.1039/C7CS00566K [12] Cui T T, Ma L N, Wang S B, et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions. J Am Chem Soc, 2021, 143(25): 9429 doi: 10.1021/jacs.1c02328 [13] Salvachúa D, Katahira R, Cleveland N S, et al. Lignin depolymerization by fungal secretomes and a microbial sink. Green Chem, 2016, 18(22): 6046 doi: 10.1039/C6GC01531J [14] Shao Y, Xia Q N, Dong L, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat Commun, 2017, 8: 16104 doi: 10.1038/ncomms16104 [15] Zheng Y W, Wang J D, Liu C, et al. Selectivity catalytic depolymerization of the hydrolyzed lignin to produce phenolic chemicals over nickel phosphides supported on HZSM-5 catalysts. Chem Ind Eng Prog, 2020, 39(5): 1792鄭云武, 王繼大, 劉燦, 等. Ni-P/HZSM-5催化木質素降解制備酚類化學品. 化工進展, 2020, 39(5):1792 [16] Wu L P, Hu X, Wang S, et al. Acid-treatment of bio-oil in methanol: The distinct catalytic behaviours of a mineral acid catalyst and a solid acid catalyst. Fuel, 2018, 212: 412 doi: 10.1016/j.fuel.2017.10.049 [17] Ma Z Q, Wang J H, Li C, et al. New sight on the lignin torrefaction pretreatment: Relevance between the evolution of chemical structure and the properties of torrefied gaseous, liquid, and solid products. Bioresour Technol, 2019, 288: 121528 doi: 10.1016/j.biortech.2019.121528 [18] Li Y D, Shuai L, Kim H, et al. An “ideal lignin” facilitates full biomass utilization. Sci Adv, 2018, 4(9): eaau2968 doi: 10.1126/sciadv.aau2968 [19] Xu H S, Wang H, Wang B. Advance research on hydrodeoxygenation catalysts of biofuel. Biomass Chem Eng, 2017, 51(6): 55 doi: 10.3969/j.issn.1673-5854.2017.06.010徐海升, 王豪, 王博. 生物燃料加氫脫氧催化劑研究進展. 生物質化學工程, 2017, 51(6):55 doi: 10.3969/j.issn.1673-5854.2017.06.010 [20] Dang R, Ma X R, Luo J, et al. Hydrodeoxygenation of 2-methoxy phenol: Effects of catalysts and process parameters on conversion and products selectivity. J Energy Inst, 2020, 93(4): 1527 doi: 10.1016/j.joei.2020.01.015 [21] Joffres B, Lorentz C, Vidalie M, et al. Catalytic hydroconversion of a wheat straw soda lignin: Characterization of the products and the lignin residue. Appl Catal B Environ, 2014, 145: 167 doi: 10.1016/j.apcatb.2013.01.039 [22] Salam M A, Arora P, Ojagh H, et al. NiMoS on alumina-USY zeolites for hydrotreating lignin dimers: Effect of support acidity and cleavage of C?C bonds. Sustainable Energy Fuels, 2020, 4(1): 149 doi: 10.1039/C9SE00507B [23] ?enol O ?, Viljava T R, Krause A O I. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal Today, 2005, 100(3-4): 331 doi: 10.1016/j.cattod.2004.10.021 [24] Gon?alves V O O, Brunet S, Richard F. Hydrodeoxygenation of cresols over Mo/Al2O3 and CoMo/Al2O3 sulfided catalysts. Catal Lett, 2016, 146(8): 1562 doi: 10.1007/s10562-016-1787-5 [25] Bui V N, Toussaint G, Laurenti D, et al. Co-processing of pyrolisis bio oils and gas oil for new generation of bio-fuels: Hydrodeoxygenation of gua?acol and SRGO mixed feed. Catal Today, 2009, 143(1-2): 172 doi: 10.1016/j.cattod.2008.11.024 [26] Wang W Y, Zhang X Z, Yang Y Q, et al. Progress in the catalysts for the hydrodeoxygenation of phenols in bio-oil. Chin J Catalysis (Chin Version) , 2013, 33(2): 215 doi: 10.3724/SP.J.1088.2012.10922 [27] Li W T, Wei X Y, Li X K, et al. Catalytic hydroconversion of lignite-related model compounds over difunctional Ni?Mg2Si/γ?Al2O3. Fuel, 2017, 200: 208 doi: 10.1016/j.fuel.2017.03.067 [28] Laskar D D, Tucker M P, Chen X W, et al. Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green Chem, 2014, 16(2): 897 doi: 10.1039/c3gc42041h [29] Toledano A, Serrano L, Pineda A, et al. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening. Appl Catal B Environ, 2014, 145: 43 doi: 10.1016/j.apcatb.2012.10.015 [30] Dong L, Lin L F, Han X, et al. Breaking the limit of lignin monomer production via cleavage of interunit carbon-carbon linkages. Chem, 2019, 5(6): 1521 doi: 10.1016/j.chempr.2019.03.007 [31] Lee H, Kim H, Yu M J, et al. Catalytic hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Sci Reports, 2016, 6: 28765 [32] Wu S K, Lai P C, Lin Y C, et al. Atmospheric hydrodeoxygenation of guaiacol over Alumina-, Zirconia-, and Silica-supported nickel phosphide catalysts. ACS Sustainable Chem Eng, 2013, 1(3): 349 doi: 10.1021/sc300157d [33] Mo L, Yu W, Cai H, et al. Hydrodeoxygenation of bio-derived phenol to cyclohexane fuel catalyzed by bifunctional mesoporous organic-inorganic hybrids. Front Chem, 2018, 6: 216 doi: 10.3389/fchem.2018.00216 [34] Zhao Z, Shi H, Wan C, et al. Mechanism of phenol alkylation in zeolite H-BEA using in situ solid-state NMR spectroscopy. J Am Chem Soc, 2017, 139(27): 9178 doi: 10.1021/jacs.7b02153 [35] Liu Y S, Baráth E, Shi H, et al. Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nat Catal, 2018, 1(2): 141 doi: 10.1038/s41929-017-0015-z [36] Borodina I B, Ponomareva O A, Fajula F, et al. Hydroalkylation of benzene and ethylbenzene over metal containing zeolite catalysts. Microporous Mesoporous Mater, 2007, 105(1-2): 181 doi: 10.1016/j.micromeso.2007.05.058 [37] Zhao C, Camaioni D M, Lercher J A. Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes. J Catal, 2012, 288: 92 doi: 10.1016/j.jcat.2012.01.005 [38] Liu Y S, Cheng G H, Baráth E, et al. Alkylation of lignin-derived aromatic oxygenates with cyclic alcohols on acidic zeolites. Appl Catal B Environ, 2021, 281: 119424 doi: 10.1016/j.apcatb.2020.119424 [39] Nie G K, Dai Y Y, Liu Y N, et al. High yield one-pot synthesis of high density and low freezing point jet-fuel-ranged blending from bio-derived phenol and cyclopentanol. Chem Eng Sci, 2019, 207: 441 doi: 10.1016/j.ces.2019.06.050 [40] Yang Z, Wei X Y, Zhang M, et al. Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A. Fuel Process Technol, 2018, 177: 345 doi: 10.1016/j.fuproc.2018.04.017 [41] Zhou X, Wei X Y, Ma Y M, et al. Highly selective catalytic hydrocracking >CH-O- bridged bonds in an alkali lignin over Ni/Hβ. Fuel, 2021, 287: 119474 doi: 10.1016/j.fuel.2020.119474 [42] Zhu C, Cao J P, Zhao X Y, et al. Mechanism of Ni-catalyzed selective CO cleavage of lignin model compound benzyl phenyl ether under mild conditions. J Energy Inst, 2019, 92(1): 74 doi: 10.1016/j.joei.2017.11.004 [43] Mendes M J, Santos O A A, Jord?o E, et al. Hydrogenation of oleic acid over ruthenium catalysts. Appl Catal A Gen, 2001, 217(1-2): 253 doi: 10.1016/S0926-860X(01)00613-5 [44] Zerva C, Karakoulia S A, Kalogiannis K G, et al. Hydrodeoxygenation of phenol and biomass fast pyrolysis oil (bio-oil) over Ni/WO3-ZrO2 catalyst. Catal Today, 2021, 366: 57 doi: 10.1016/j.cattod.2020.08.029 [45] Kim Y, Shim J, Choi J W, et al. Continuous-flow production of petroleum-replacing fuels from highly viscous Kraft lignin pyrolysis oil using its hydrocracked oil as a solvent. Energy Convers Manag, 2020, 213: 112728 doi: 10.1016/j.enconman.2020.112728 [46] Ardiyanti A R, Khromova S A, Venderbosch R H, et al. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support. Appl Catal B Environ, 2012, 117-118: 105 doi: 10.1016/j.apcatb.2011.12.032 [47] Leng S, Wang X D, He X B, et al. NiFe/γ-Al2O3: A universal catalyst for the hydrodeoxygenation of bio-oil and its model compounds. Catal Commun, 2013, 41: 34 doi: 10.1016/j.catcom.2013.06.037 [48] Nesterov N S, Smirnov A A, Pakharukova V P, et al. Advanced green approaches for the synthesis of NiCu-containing catalysts for the hydrodeoxygenation of anisole. Catal Today, 2021, 379: 262 doi: 10.1016/j.cattod.2020.09.006 [49] Li Y Q, Liang K Y, Wang J J, et al. Research progress of mesoporous silica-based composite phase change materials. Chin J Eng, 2020, 42(10): 1229李亞瓊, 梁凱彥, 王靜靜, 等. 介孔二氧化硅基復合相變材料研究進展. 工程科學學報, 2020, 42(10):1229 [50] Gong Z Q, Yan C X, Xuan Z Y, et al. Development of template methods for the preparation of porous photocatalysts of graphite-like carbon nitride. Chin J Eng, 2021, 43(3): 345鞏正奇, 閆楚璇, 宣之易, 等. 制備類石墨相氮化碳多孔光催化劑的模板法發展. 工程科學學報, 2021, 43(3):345 [51] Xue H Y, Gong X X, Xu J J, et al. Performance of a Ni-Cu-Co/Al2O3 catalyst on in situ hydrodeoxygenation of bio-derived phenol. Catalysts, 2019, 9(11): 952 doi: 10.3390/catal9110952 [52] Sun J M, Karim A M, Zhang H, et al. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. J Catal, 2013, 306: 47 doi: 10.1016/j.jcat.2013.05.020 [53] Bui P, Cecilia J A, Oyama S T, et al. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. J Catal, 2012, 294: 184 doi: 10.1016/j.jcat.2012.07.021 [54] Moon J S, Kim E G, Lee Y K. Active sites of Ni2P/SiO2 catalyst for hydrodeoxygenation of guaiacol: A joint XAFS and DFT study. J Catal, 2014, 311: 144 doi: 10.1016/j.jcat.2013.11.023 [55] Yu Z Q, Wang Y, Sun Z C, et al. Ni3P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chem, 2018, 20(3): 609 doi: 10.1039/C7GC03262E [56] Jin L H, Xia H, Huang Z P, et al. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. J Mater Chem A, 2016, 4(28): 10925 doi: 10.1039/C6TA03028A [57] Li Y N, Yu Z Q, Zhang X, et al. Hydrodeoxygenation of phenol over Ni3P/γ-Al2O3 catalyst prepared by electroless plating. Chem React Eng Technol, 2019, 35(6): 516李燕妮, 遇治權, 張鑫, 等. 化學鍍法制備Ni3P/γ-Al2O3及其催化苯酚加氫脫氧性能. 化學反應工程與工藝, 2019, 35(6):516 -