Development of an oxygen blast furnace and its research progress in University of Science and Technology Beijing
-
摘要: 首先介紹了氧氣高爐的發展歷程,早期的研究工作主要著眼于解決由于氧氣代替空氣鼓風而引起的“上冷下熱”問題,并總結了各國研究者提出的氧氣高爐流程及其主要特點。隨后系統闡述了北京科技大學科研人員在氧氣高爐工藝基礎研究與工程技術開發方面所取得的主要進展。這些研究包括氧氣高爐流程設計,含鐵爐料還原與軟熔,氧氣鼓風及循環煤氣噴吹條件下的煤粉燃燒,循環煤氣加熱過程中的物理化學變化等爐內反應與變化,以及在此基礎上開展的回旋區及全爐數值模擬研究,為氧氣高爐的工程化實施奠定理論基礎。最后對氧氣高爐的碳素流及節碳潛力進行了分析,并提出富氫碳氫循環氧氣高爐將成為煉鐵低碳化的重要發展方向。Abstract: An oxygen blast furnace (OBF) has the advantages of high productivity, high coal injection, low fuel ratio, high gas calorific value, and low carbon emissions; the OBF process is one of the most likely low-carbon ironmaking processes to achieve large-scale application. This paper first introduced the development history of an OBF. The early research work mainly focused on solving the problem of “upper cooling and lower overheating” caused by oxygen instead of air blasting and summarized the OBF process and its main characteristics proposed by researchers in various countries. Then, the progress made by the researchers of the University of Science and Technology Beijing in the research and development of the OBF process was systematically summarized. The studies include the process design of an OBF, the reduction and soft melting of iron-bearing furnace charge, pulverized coal combustion under the conditions of oxygen blast and circulating gas injection, the physical and chemical behavior of recirculating gas during the heating process, as well as the numerical simulation of the raceway and the whole furnace, which gives a theoretical foundation for the engineering implementation of the OBF. Finally, the carbon flow and carbon saving potential of the OBF were analyzed. It is proposed that a hydrogen rich carbon circulating oxygen blast furnace will be an important development in the direction of low-carbon ironmaking.
-
圖 5 傳統高爐(TBF)與氧氣高爐(OBF)煤粉燃燼率變化[75]。(a)不同高爐種類煤粉燃盡率對比;(b)不同類型氧煤槍下煤粉燃盡變化
Figure 5. Changes in the pulverized coal burning rate for a traditional blast furnace (TBF) and an oxygen blast furnace (OBF) [75]: (a) comparison of pulverized coal burnout rate between TBF and OBF; (b) changes of pulverized coal burnout under different types of oxygen coal lances
圖 6 不同鼓風氧含量條件下循環煤氣噴入回旋區的溫度分布(MOBF-RGI-2)[78]。(a)回旋區內的氣體溫度分布;(b)煤粉顆粒溫度變化軌跡
Figure 6. Temperature distribution in a raceway with recycling gas injection under various blast oxygen content conditions (MOBF-RGI-2) [78]: (a) gas temperature distribution from the coal lance exit to the raceway outlet; (b) trajectory of pulverized coal particles
圖 7 氧氣高爐的熱儲備區與還原度分布[41]。(a)還原度等值線圖;(b)沿爐膛中心高度方向的還原度和爐料溫度;(c)沿爐膛中心高度方向的還原速率
Figure 7. Distributions of the thermal reserve zone and reduction degree of the oxygen blast furnace[41]: (a) contour map of the reduction degree; (b) solid temperature and reduction degree of iron ore; (c) reduction rate along the furnace center
圖 8 爐缸上升煤氣與爐身噴吹煤氣的交互作用[82]。(a)不同工況下風口配置方式的垂直視圖(1,2—爐缸風口;3,4,5—爐身風口);(b)上升氣流對SIG的影響
Figure 8. Interaction between rising gas from the hearth and gas injected from the furnace shaft[82]: (a) vertical view of shaft tuyere configuration mode in different conditions (1,2—hearth tuyere; 3,4,5—shaft tuyere); (b) impact of rising flow on SIG
表 1 不同氧氣高爐流程工藝特點
Table 1. Process characteristics of various oxygen blast furnace processes
Time Process name Blowing position Spray-blown objects Process features 1978 Fink[19] Hearth, bosh Oxygen, pulverized coal,
top gas(1) Top gas removes CO2 without preheating;
(2) Low fuel ratio and 1/2 increase in productivity.1985 FOBF[20] Hearth, furnace shaft Hearth: oxygen, pulverized coal, top gas
Furnace shaft: recycling gas(1) Top gas removes CO2, and preheating to 1200 K, Supplement heat;
(2) Part of the top gas does not remove CO2 and is used as carrier gas.1987 NKK[13] Hearth, furnace shaft Hearth: oxygen, pulverized coal, top gas
Furnace shaft: recycling gas(1) Preheating circulating gas is injected into the middle of the furnace shaft to supplement the furnace shaft heat;
(2) Considerable coal injection and high productivity.1987 Tula[21] Hearth Oxygen, top gas (1) Top gas removes CO2, and preheating;
(2) Coke ratio decreases, and the output increases by 20%–30%.1992 BOBF[22] Hearth Coal powder, oxygen (1) No circulating gas;
(2) The oxygen content of the blast fluctuates between 40% and 90%.1994 OCF[23] Hearth Oxygen, pulverized coal, top gas, solvents (1) No CO2 removal and no heating;
(2) Inject a large amount of pulverized coal and
an appropriate amount of flux.www.77susu.com -
參考文獻
[1] Bookhart D. Strategies for carbon neutrality. Sustain:J Rec, 2008, 1(1): 34 [2] Zhang L N, Li X C, Li B, et al. Research and application on calculation method of technical carbon emission reduction cost of iron and steel enterprises. Energy Metall Ind, 2020, 39(4): 3 doi: 10.3969/j.issn.1001-1617.2020.04.001張利娜, 李新創, 李冰, 等. 基于鋼鐵企業的技術碳減排成本計算方法研究及應用. 冶金能源, 2020, 39(4):3 doi: 10.3969/j.issn.1001-1617.2020.04.001 [3] Wang H Y, Zhang J L, Wang G W, et al. Analysis of carbon dioxide emission reduction before ironmaking. China Metall, 2018, 28(1): 1王海洋, 張建良, 王廣偉, 等. 鐵前系統的二氧化碳減排技術淺析. 中國冶金, 2018, 28(1):1 [4] Zhao P, Luo Z H, Mi S. How is the road to carbon emission reduction in my country’s steel industry? [N/OL] China Metallurgical News (2021-05-25) [2021-09-22]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CCND&filename=CYJB202105250070趙萍, 羅忠河, 米颯. 我國鋼鐵行業碳減排之路怎么走? [N/OL]. 中國冶金報 (2021-05-25) [2021-09-22]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CCND&filename=CYJB202105250070 [5] Xu K D. Low carbon economy and iron and steel industry. Iron Steel, 2010, 45(3): 1徐匡迪. 低碳經濟與鋼鐵工業. 鋼鐵, 2010, 45(3):1 [6] Xu W Q, Li Y J, Zhu T Y, et al. CO2 emission in iron and steel making industry and its reduction prospect. Chin J Process Eng, 2013, 13(1): 175徐文青, 李寅蛟, 朱廷鈺, 等. 中國鋼鐵工業CO2排放現狀與減排展望. 過程工程學報, 2013, 13(1):175 [7] Li K J, Zhang J L, Zhang Y P, et al. Analysis on development of iron-making process based on the principle of energy-saving and emission reduction. Chin J Process Eng, 2014, 14(1): 162李克江, 張建良, 張亞鵬, 等. 基于節能減排思想分析煉鐵工藝的發展. 過程工程學報, 2014, 14(1):162 [8] Zhou D D, Xu K, Xu G, et al. The production of large blast furnaces of China in 2017. Ironmak Steelmak, 2020, 47(3): 316 doi: 10.1080/03019233.2018.1518688 [9] Matsui Y, Sawayama M, Kasai A, et al. Reduction behavior of carbon composite iron ore hot briquette in shaft furnace and scope on blast furnace performance reinforcement. ISIJ Int, 2003, 43(12): 1904 doi: 10.2355/isijinternational.43.1904 [10] Chu M S, Shang C, Ai M X, et al. New development of blast furnace ironmaking technologies. China Metall, 2006, 16(10): 4 doi: 10.3969/j.issn.1006-9356.2006.10.002儲滿生, 尚策, 艾名星, 等. 高爐煉鐵技術的最新進展. 中國冶金, 2006, 16(10):4 doi: 10.3969/j.issn.1006-9356.2006.10.002 [11] Yang T J, Zuo H B. Scientific development strategy of blast furnace ironmaking technology in China. Iron Steel, 2008, 43(1): 1 doi: 10.3321/j.issn:0449-749X.2008.01.001楊天鈞, 左海濱. 中國高爐煉鐵技術科學發展的途徑. 鋼鐵, 2008, 43(1):1 doi: 10.3321/j.issn:0449-749X.2008.01.001 [12] Yamaoka H, Kamei Y S. Experimental study on an oxygen blast furnace process using a small test plant. ISIJ Int, 1992, 32(6): 709 doi: 10.2355/isijinternational.32.709 [13] Ohno Y, Hotta H, Matsuura M, et al. Development of oxygen blast furnace process with preheating gas injection into upper shaft. Tetsu-to-Hagane, 1989, 75(8): 1278 doi: 10.2355/tetsutohagane1955.75.8_1278 [14] Yamaoka H, Kamei Y S. Theoretical study on an oxygen blast furnace using mathematical simulation model. ISIJ Int, 1992, 32(6): 701 doi: 10.2355/isijinternational.32.701 [15] Tseitlin M A, Lazutkin S E, Styopin G M. A flow-chart for iron making on the basis of 100% usage of process oxygen and hot reducing gases injection. ISIJ Int, 1994, 34(7): 570 doi: 10.2355/isijinternational.34.570 [16] Ariyama T, Sato M, Nouchi T, et al. Evolution of blast furnace process toward reductant flexibility and carbon dioxide mitigation in steel works. ISIJ Int, 2016, 56(10): 1681 doi: 10.2355/isijinternational.ISIJINT-2016-210 [17] Han Y H, Xue Q G, Li Y Z. Prospect analysis on new ironmaking technology of oxygen blast furnace and gas-recycle. Adv Mater Res, 2010, 146-147: 417 doi: 10.4028/www.scientific.net/AMR.146-147.417 [18] Wenzel W, Gudenau H W, Fukushima T. Blast Furnace Operating Methods: U. S. Patent 3, 884, 677. 1975-5-20 [19] Fink F. Suspension smelting reduction - a new method of hot iron production. Steel Times, 1996, 224(11): 398 [20] Qin M S, Xie Y K, Yang Y Y, et al. Feasibility study of a new blast furnace process of injecting coal at unusual high rate and partially recycling of top gas. Iron Steel, 1985, 20(5): 13秦民生, 謝湧堃, 楊永宜, 等. 高爐超量噴吹煤粉及爐頂煤氣部分循環工藝可行性研究. 鋼鐵, 1985, 20(5):13 [21] Tovarovskiy I G. Substitution of coke and energy saving in blast furnaces. Part 4. System analysis of the processes under influence of the complex of parameters. Energy Sci Technol, 2013, 6(1): 44 [22] Edstroem J O, Ma J T. Influence of the type of coal on energy consumption in shaft furnace smelting reduction processes. Scand J Metall, 1989, 18(3): 105 [23] Gao Z K, Zhang J L, Kong L T. New technology for blast furnace ironmaking with oxygen-coal. Iron Steel, 1997, 32(suppl): 372高征鎧, 張建良, 孔令壇. 高爐氧煤煉鐵新工藝. 鋼鐵, 1997, 32(增刊): 372 [24] Ohno Y, Matsuura M, Mitsufuji H, et al. Process characteristics of a commercial-scale oxygen blast furnace process with shaft gas injection. ISIJ Int, 1992, 32(7): 838 doi: 10.2355/isijinternational.32.838 [25] Zuo G Q, Hirsch A. The trial of the top gas recycling blast furnace at LKAB's EBF and scale-up. Rev Met Paris, 2009, 106(9): 387 doi: 10.1051/metal/2009067 [26] van der Stel J, Louwerse G, Sert D, et al. Top gas recycling blast furnace developments for ‘green’ and sustainable ironmaking. Ironmak Steelmak, 2013, 40(7): 483 doi: 10.1179/0301923313Z.000000000221 [27] Danloy G, Berthelemot A, Grant M, et al. ULCOS - Pilot testing of the low-CO2 blast furnace process at the experimental BF in Lule?. Rev Met Paris, 2009, 106(1): 1 doi: 10.1051/metal/2009008 [28] Abdul Quader M, Ahmed S, Dawal S Z, et al. Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program. Renew Sustain Energy Rev, 2016, 55: 537 doi: 10.1016/j.rser.2015.10.101 [29] Zhang W, Dai J, Li C Z, et al. A review on explorations of the oxygen blast furnace process. Steel Res Int, 2021, 92(1): 2000326 doi: 10.1002/srin.202000326 [30] Gao J J, Qi Y H, Zhou Y S, et al. Technical analysis on oxygen blast furnace ironmaking process. Iron Steel Vanadium Titanium, 2012, 33(2): 40 doi: 10.7513/j.issn.1004-7638.2012.02.008高建軍, 齊淵洪, 周渝生, 等. 氧氣高爐煉鐵技術分析. 鋼鐵釩鈦, 2012, 33(2):40 doi: 10.7513/j.issn.1004-7638.2012.02.008 [31] Qi Y H, Yan D L, Gao J J, et al. Study on industrial test of the oxygen blast furnace. Iron Steel, 2011, 46(3): 6齊淵洪, 嚴定鎏, 高建軍, 等. 氧氣高爐工業化試驗研究. 鋼鐵, 2011, 46(3):6 [32] Qi Y H, Gao J J, Zhou Y S, etc. The current development and key technical problems of oxygen blast furnace // 2011 National Metallurgical Energy Conservation, Emission Reduction and Low Carbon Technology Development Conference Proceedings. Tangshan, 2011: 80齊淵洪, 高建軍, 周渝生, 等. 氧氣高爐的發展現狀及關鍵技術問題分析 // 2011年全國冶金節能減排與低碳技術發展研討會論文集. 唐山, 2011: 80 [33] Qin M S, Zhang Y T, Lu H S, et al. A comprehensive mathematical model for blast furnace ironmaking process. Iron Steel, 1990, 25(10): 9秦民生, 張郁亭, 盧虎生, 等. 高爐煉鐵過程綜合數學模型. 鋼鐵, 1990, 25(10):9 [34] Gao Z K. Process for Making Iron in Blast Furnace by Compound Blow of Oxygen, Coal Powder and Flux at Tuyere: China Patent, CN94105875.1. 1995-01-25高征鎧. 氧氣煤粉熔劑風口復合噴吹高爐煉鐵工藝: 中國專利, CN94105875.1. 1995-01-25 [35] Gao Z K, Sommerville I D. Study on OCF blast furnace process, Iron Steel, 1994, 29(6): 13高征鎧, Sommerville I D. 氧氣煤粉熔劑復合噴吹(OCF)高爐煉鐵工藝的研究. 鋼鐵, 1994, 29(6): 13 [36] Y J W, S G L, K C J, et al. Oxygen blast furnace and combined cycle (OBF-CC)—an efficient iron-making and power generation process. Energy, 2003, 28(8): 825 doi: 10.1016/S0360-5442(03)00007-0 [37] Zhang J L, Wang G W, Shao J G, et al. Comprehensive mathematical model and optimum process parameters of nitrogen free blast furnace. J Iron Steel Res Int, 2014, 21(2): 151 doi: 10.1016/S1006-706X(14)60024-8 [38] Han Y H. Fundamental Research on Ironmaking Process of Top Gas Recycling – Oxygen Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2012韓毅華. 爐頂煤氣循環-氧氣鼓風高爐煉鐵工藝基礎研究[學位論文]. 北京: 北京科技大學, 2012 [39] Han Y H, Wang J S, Li Y Z, et al. Comprehensive mathematical model of top gas recycling-oxygen blast furnaces. J Univ Sci Technol Beijing, 2011, 33(10): 1280韓毅華, 王靜松, 李燕珍, 等. 爐頂煤氣循環—氧氣鼓風高爐綜合數學模型. 北京科技大學學報, 2011, 33(10):1280 [40] Chen Y X. Fundamental Research of Combined-blast Application in Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2011陳永星. 高爐富氧綜合鼓風的應用基礎研究[學位論文]. 北京: 北京科技大學, 2011 [41] Zhang Z L, Meng J L, Guo L, et al. Numerical study of the reduction process in an oxygen blast furnace. Metall Mater Trans B, 2016, 47(1): 467 doi: 10.1007/s11663-015-0483-y [42] Lan R Z, Wang J S, Han Y H, et al. Reduction behavior of sinter based on top gas recycling-oxygen blast furnace. J Iron Steel Res Int, 2012, 19(9): 13 doi: 10.1016/S1006-706X(13)60003-5 [43] Han Y H, Wang J S, Lan R Z, et al. Kinetic analysis of iron oxide reduction in top gas recycling oxygen blast furnace. Ironmak Steelmak, 2012, 39(5): 313 doi: 10.1179/1743281211Y.0000000058 [44] An Xiuwei. Research on Change of Burden Properties and Carbon Saving Potential of Oxygen Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2013安秀偉. 氧氣高爐爐料性質演變特性及節碳潛力研究 [學位論文]. 北京: 北京科技大學, 2013 [45] Zuo X J, Wang J S, An X W, et al. Reduction behaviors of pellets under different reducing potentials. J Iron Steel Res Int, 2013, 20(12): 12 doi: 10.1016/S1006-706X(13)60210-1 [46] Zhang H J, Wang J S, An X W, et al. Reduction behavior of pellet under simulated oxygen blast furnace condition. J Iron Steel Res Int, 2015, 22(2): 115 doi: 10.1016/S1006-706X(15)60018-8 [47] Qiao Z, Zhang H J, Wang J S, et al. Programming reduction behavior of the ferrous burden under oxygen blast furnace simulated condition. J Taiyuan Univ Technol, 2014, 45(1): 25 doi: 10.3969/j.issn.1007-9432.2014.01.005喬哲, 張華杰, 王靜松, 等. 氧氣高爐條件下含鐵爐料的程序還原行為實驗研究. 太原理工大學學報, 2014, 45(1):25 doi: 10.3969/j.issn.1007-9432.2014.01.005 [48] Jin P, Jiang Z Y, E D Y, et al. Numerical simulation of burden descending behavior in oxygen blast furnace // Proceedings of ASME 2013 Fluids Engineering Division Summer Meeting, Incline Village, 2013: FEDSM2013-16574 [49] Liu Y L, Wang J S, Zhang H J, et al. Reduction behaviour of ferrous burden under simulated oxygen blast furnace conditions. Ironmak Steelmak, 2015, 42(5): 358 doi: 10.1179/1743281214Y.0000000238 [50] Chen L, Xue Q G, Guo W T, et al. Study on the interaction behaviour between lump and sinter under the condition of oxygen blast furnace. Ironmak Steelmak, 2016, 43(6): 458 doi: 10.1080/03019233.2015.1104074 [51] Wang B X, Liu Y L, Wang G, et al. Study on low temperature reduction degradation of sinter in oxygen-enriched coke oven gas injection process // Proceedings of the 11th China Iron and Steel Annual Conference. Beijing, 2017: 593王彬旭, 劉迎立, 王廣, 等. 富氧噴吹焦爐煤氣工藝下燒結礦低溫還原粉化研究 // 第十一屆中國鋼鐵年會論文集. 北京, 2017: 593 [52] An X W, Wang J S, Lan R Z, et al. Softening and melting behavior of mixed burden for oxygen blast furnace. J Iron Steel Res Int, 2013, 20(5): 11 doi: 10.1016/S1006-706X(13)60090-4 [53] Zhang H J, She X F, Han Y H, et al. Softening and melting behavior of ferrous burden under simulated oxygen blast furnace condition. J Iron Steel Res Int, 2015, 22(4): 297 doi: 10.1016/S1006-706X(15)30003-0 [54] Pan Y Z. Study on the Interaction of Iron-Containing Burdens and Its Influence on Permeability of Cohesive Zone in Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2020潘玉柱. 高爐含鐵爐料交互作用及其對軟熔帶透氣性影響研究[學位論文]. 北京: 北京科技大學, 2020 [55] Chai Y F, Zhang J L, Shao Q J, et al. Experiment research on pulverized coal combustion in the tuyere of oxygen blast furnace. High Temp Mater Process, 2019, 38(2019): 42 doi: 10.1515/htmp-2017-0141 [56] Li Z G, Guo Z C, Gong X Z, et al. Kinetic characteristics of pulverized coal combustion in the two-phase flow. Energy, 2013, 55: 585 doi: 10.1016/j.energy.2013.04.028 [57] Gong X Z, Guo Z C, Wang Z. Variation of char structure during anthracite pyrolysis catalyzed by Fe2O3 and its influence on char combustion reactivity. Energy Fuels, 2009, 23(9): 4547 doi: 10.1021/ef900550w [58] Gong X Z, Guo Z C, Wang Z. Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3. Combust Flame, 2010, 157(2): 351 doi: 10.1016/j.combustflame.2009.06.025 [59] Wang G, Liu Y L, Zhou Z F, et al. Static holdup of liquid slag in simulated packed coke bed under oxygen blast furnace ironmaking conditions. JOM, 2018, 70(1): 29 doi: 10.1007/s11837-017-2620-3 [60] Liu Y L. Fundamental Research on Maturllurgical Behavior of Burden in Melting and Dropping Zone Based on the Process of Oxygen Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2017劉迎立. 基于氧氣高爐工藝條件的熔融滴落帶爐料冶金行為研究[學位論文]. 北京: 北京科技大學, 2017 [61] Liu Y L, Xue Q G, Guo W T, et al. The dynamic dissolution of coke with slag in melting and dropping zone // 7th International Symposium on High-Temperature Metallurgical Processing. Nashville, 2016: 279 [62] Liu Y L, Xue Q G, Wang G, et al. Dynamic dissolution of CO2/H2O(g)-gasified coke by slag containing FeO. Ironmak Steelmak, 2018, 45(9): 821 doi: 10.1080/03019233.2017.1339397 [63] Zhu H B, Zhan W L, He Z J, et al. Pore structure evolution during the coke graphitization process in a blast furnace. Int J Miner Metall Mater, 2020, 27(9): 1226 doi: 10.1007/s12613-019-1927-1 [64] Sun M M, Zhang J L, Li K J, et al. Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace. Int J Miner Metall Mater, 2019, 26(10): 1247 doi: 10.1007/s12613-019-1846-1 [65] Guo W T, Xue Q G, Liu Y L, et al. Microstructure evolution during softening and melting process in different reduction degrees. Ironmak Steelmak, 2016, 43(1): 22 doi: 10.1179/1743281215Y.0000000043 [66] Guo W T, Xue Q G, Liu Y L, et al. Kinetic analysis of gasification reaction of coke with CO2 or H2O. Int J Hydrog Energy, 2015, 40(39): 13306 doi: 10.1016/j.ijhydene.2015.07.048 [67] Guo W T, Xue Q G, She X F, et al. Study on compressive strength of coke after gasified with CO2 and steam. // 7th International Symposium on High-Temperature Metallurgical Processing. Nashville, 2016: 707 [68] Guo W T, Wang J S, She X F, et al. Pore structure and high-temperature compressive strength of gasified coke with CO2 and steam. J Fuel Chem Technol, 2015, 43(6): 654 doi: 10.3969/j.issn.0253-2409.2015.06.003郭文濤, 王靜松, 佘雪峰, 等. 焦炭與CO2和水蒸氣氣化后孔隙結構和高溫抗壓強度研究. 燃料化學學報, 2015, 43(6):654 doi: 10.3969/j.issn.0253-2409.2015.06.003 [69] Guo W T. The Influence of the Coke Microstructure on the Reaction Behavior and Performance in the Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2016郭文濤. 焦炭微觀結構對其在高爐中反應行為與性能影響研究[學位論文]. 北京: 北京科技大學, 2016 [70] Liu J Z, Wang J S, She X F, et al. Investigation on carbon-deposition behavior from heating cycle gas in oxygen blast furnace process. Metall Mater Trans B, 2015, 46(1): 93 doi: 10.1007/s11663-014-0212-y [71] Liu J Z. Fundamental Research on Shaft and Cycle Gas Behaviors in Oxygen Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2015劉錦周. 氧氣高爐爐身煤氣和循環煤氣行為基礎研究[學位論文]. 北京: 北京科技大學, 2015 [72] Jin P, Jiang Z Y, Bao C, et al. Mathematical modeling of the energy consumption and carbon emission for the oxygen blast furnace with top gas recycling. Steel Res Int, 2016, 87(3): 320 doi: 10.1002/srin.201500054 [73] Jin P, Jiang Z Y, Bao C, et al. One-dimensional mathematical model for oxygen blast furnaces with top gas recycling based on heat transfer and reaction kinetics. Chin J Eng, 2015, 37(4): 499金鵬, 姜澤毅, 包成, 等. 爐頂煤氣循環氧氣高爐一維氣固換熱與反應動力學模型. 工程科學學報, 2015, 37(4):499 [74] Jiang Z Y, Xie Y, Jin P, et al. Three-dimensional mathematical model of multiphase combustion in full oxygen blast furnace // Proceedings of ASME 2013 Heat Transfer Summer Conference Collocated With the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. Minneapolis, 2013: HT2013-17107 [75] Zhou Z F, Xue Q G, Tang H Q, et al. Coal combustion behavior in new ironmaking process of top gas recycling oxygen blast furnace. JOM, 2017, 69(10): 1790 doi: 10.1007/s11837-017-2515-3 [76] Zhou Z F. Numerical Investigation on Oxygen Coal Combustion Behavior in the Raceway of Blast Furnace [Dissertation]. Beijing: University of Science and Technology Beijing, 2018周振峰. 高爐回旋區內氧煤燃燒行為數值模擬研究[學位論文]. 北京: 北京科技大學, 2018 [77] Wu J M, Zhou Z F, Peng X, et al. Three dimensional numerical simulation of pulverized coal combustion behavior in the raceway of an oxygen blast furnace. Nonferrous Met Sci Eng, 2018, 9(4): 1吳俊明, 周振峰, 彭星, 等. 氧氣高爐回旋區內煤粉燃燒行為的三維數值模擬研究. 有色金屬科學與工程, 2018, 9(4):1 [78] Peng X, Wang J S, Li C, et al. Influence of reducing gas injection methods on pulverized coal combustion in a medium oxygen-enriched blast furnace. JOM, 2021, 73(10): 2929 doi: 10.1007/s11837-021-04812-w [79] Zhang Z L, Meng J L, Guo L, et al. Numerical study of the gas distribution in an oxygen blast furnace. Part 1: Model building and basic characteristics. JOM, 2015, 67(9): 1936 [80] Zhang Z L, Meng J L, Guo L, et al. Numerical study of the gas distribution in an oxygen blast furnace. Part 2: Effects of the design and operating parameters. JOM, 2015, 67(9): 1945 [81] Liu L Z, Jiang Z Y, Zhang X R, et al. Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace. Energy, 2018, 163: 144 doi: 10.1016/j.energy.2018.08.114 [82] Dong Z S, Xue Q G, Zuo H B, et al. Gas-solid flow and shaft injected gas penetration in an oxygen blast furnace analyzed using a three-dimensional DEM-CFD coupling mathematical model. ISIJ Int, 2016, 56(9): 1588 doi: 10.2355/isijinternational.ISIJINT-2016-217 [83] Dong Z S, Wang J S, Zuo H B, et al. Analysis of gas-solid flow and shaft-injected gas distribution in an oxygen blast furnace using a discrete element method and computational fluid dynamics coupled model. Particuology, 2017, 32: 63 doi: 10.1016/j.partic.2016.07.008 [84] Dong Z S. Research on the Gas-Solid Two Phase Flow in Oxygen Blast Furnace by Physical and Mathematical Simulation [Dissertation]. Beijing: University of Science and Technology Beijing, 2017董擇上. 氧氣高爐氣—固兩相流的物理和數學模擬研究[學位論文]. 北京: 北京科技大學, 2017 [85] Jin P. Feasibility Investigation on Oxygen Blast Furnace with Top Gas Recycling Based on Multi-level Models [Dissertation]. Beijing: University of Science and Technology Beijing, 2016金鵬. 基于多層次模型的爐頂煤氣循環氧氣高爐可行性研究[學位論文]. 北京科技大學, 2016 [86] Zhao Y W, Zuo H B, She X F, et al. Case study on calculation method of carbon dioxide emission in iron and steel industry. Nonferrous Met Sci Eng, 2019, 10(1): 34趙藝偉, 左海濱, 佘雪峰, 等. 鋼鐵工業二氧化碳排放計算方法實例研究. 有色金屬科學與工程, 2019, 10(1):34 [87] Xue Q G, Han Y H, Wang J S, et al. Progress of research on oxygen blast furnace and the potential analysis of energy saving and emission reduction // 2011 National Metallurgical Energy Conservation, Emission Reduction and Low Carbon Technology Development Conference Proceedings. Tangshan, 2011: 44薛慶國, 韓毅華, 王靜松, 等. 氧氣高爐技術的研究進展及其節能減排潛力分析 // 2011年全國冶金節能減排與低碳技術發展研討會論文集. 唐山, 2011: 49 [88] She X F, An X W, Wang J S, et al. Numerical analysis of carbon saving potential in a top gas recycling oxygen blast furnace. J Iron Steel Res Int, 2017, 24(6): 608 doi: 10.1016/S1006-706X(17)30092-4 [89] Li C L, Xue Q G, Dong Z S, et al. Exergy analysis on the improved gas process by gasifier injection into oxygen blast furnace. Nonferrous Met Sci Eng, 2018, 9(2): 6李長樂, 薛慶國, 董擇上, 等. 氧氣高爐噴吹氣化爐重整煤氣工藝的?分析. 有色金屬科學與工程, 2018, 9(2):6 [90] Song J Y, Jiang Z Y, Bao C, et al. Comparison of energy consumption and CO2 emission for three steel production routes—integrated steel plant equipped with blast furnace, oxygen blast furnace or COREX. Metals, 2019, 9(3): 364 doi: 10.3390/met9030364 [91] Jin P, Jiang Z Y, Bao C, et al. The energy consumption and carbon emission of the integrated steel mill with oxygen blast furnace. Resour Conserv Recycl, 2017, 117: 58 doi: 10.1016/j.resconrec.2015.07.008 [92] Zhang X X, Xue Q G, Guo Z C, et al. The synergistic principle of energy/mass transfer and high temperature thermochemical reaction under full oxygen blast furnace condition. Sci Technol Inf, 2016, 14(16): 173 doi: 10.3969/j.issn.1672-3791.2016.16.100張欣欣, 薛慶國, 郭占成, 等. 全氧條件下高爐高溫熱化學反應與能質傳遞協同原理. 科技資訊, 2016, 14(16):173 doi: 10.3969/j.issn.1672-3791.2016.16.100 [93] Tang J, Chu M S, Li F, et al. Development and progress on hydrogen metallurgy. Int J Miner Metall Mater, 2020, 27(6): 713 doi: 10.1007/s12613-020-2021-4 [94] World Metal Leader. Innovative low-carbon smelting, the country's first oxygen blast furnace is ignited at Bayi Steel [EB/OL]. World Metal Leader Online (2020-08-09) [2021-09-22]. http://www.worldmetals.com.cn/viscms/bianjituijianxinwen1277/20200809/252075.html世界金屬導報. 創新低碳冶煉全國首個氧氣高爐在八鋼點火[EB/OL]. 世界金屬導報(2020-08-09) [2021-10-25]. http://www.worldmetals.com.cn/viscms/bianjituijianxinwen1277/20200809/252075.html [95] Tianshan Net. Bagang hydrogen-rich carbon circulating blast furnace achieves 50% high oxygen-enriched smelting target [EB/OL]. People's Information (2021-08-07) [2021-09-22]. https://baijiahao.baidu.com/s?id=1707446279847837286&wfr=spider&for=pc天山網. 八鋼富氫碳循環高爐實現50%高富氧冶煉目標[EB/OL]. 人民資訊(2021-08-07) [2021-09-22].https://baijiahao.baidu.com/s?id=1707446279847837286&wfr=spider&for=pc -