<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

超重力冶金:科學原理、實驗方法、技術基礎、應用設計

郭占成 高金濤 王哲 郭磊 王明涌

郭占成, 高金濤, 王哲, 郭磊, 王明涌. 超重力冶金:科學原理、實驗方法、技術基礎、應用設計[J]. 工程科學學報, 2021, 43(12): 1592-1617. doi: 10.13374/j.issn2095-9389.2021.09.21.002
引用本文: 郭占成, 高金濤, 王哲, 郭磊, 王明涌. 超重力冶金:科學原理、實驗方法、技術基礎、應用設計[J]. 工程科學學報, 2021, 43(12): 1592-1617. doi: 10.13374/j.issn2095-9389.2021.09.21.002
GUO Zhan-cheng, GAO Jin-tao, WANG Zhe, GUO Lei, WANG Ming-yong. Supergravity metallurgy: principles, experimental methods, techniques, and applications[J]. Chinese Journal of Engineering, 2021, 43(12): 1592-1617. doi: 10.13374/j.issn2095-9389.2021.09.21.002
Citation: GUO Zhan-cheng, GAO Jin-tao, WANG Zhe, GUO Lei, WANG Ming-yong. Supergravity metallurgy: principles, experimental methods, techniques, and applications[J]. Chinese Journal of Engineering, 2021, 43(12): 1592-1617. doi: 10.13374/j.issn2095-9389.2021.09.21.002

超重力冶金:科學原理、實驗方法、技術基礎、應用設計

doi: 10.13374/j.issn2095-9389.2021.09.21.002
基金項目: 國家自然科學基金資助項目(5217041283)
詳細信息
    通訊作者:

    E-mail: zcguo@ustb.edu.cn

  • 中圖分類號: TG142.71

Supergravity metallurgy: principles, experimental methods, techniques, and applications

More Information
  • 摘要: 超重力顯著增大兩相間的重力差,可用于加速固?液、液?液、液?氣高溫黏稠混和體的相分離速度;超重力具有定向性,避免攪拌等技術產生的熔體湍流返混,可用于深度脫除金屬液中細小夾雜物;超重力條件下固?液界面張力微不足道,可容易實現微孔滲流;超重力條件下進行結晶凝固,按結晶順序實現固?液分離,可用于制備梯度材料;超重力加速固?液分離,可細化凝固組織晶粒,但對非共晶熔體也易產生宏觀偏析。將超重力技術應用于冶金及材料生產過程中,有望解決高溫冶金和材料制備的一些難題,如復雜礦冶金渣有價組分的分離提取、冶煉渣中金屬液的分離回收、多金屬的熔析結晶分離、復雜礦直接還原鐵的渣?金分離;在高端金屬材料方面,應用超重力技術,有望解決近零夾物金屬材料的精煉除雜難題,提高梯度功能材料、金屬?陶瓷復合材料、多孔金屬材料、器件材料表面電沉積修飾的制造水平。此外,在材料科學研究方面,超重力凝固可作為一種材料基因組高通量制備方法。

     

  • 圖  1  重力對固?液界面Marangoni效應的影響,超重力與附加壓力對固?液接觸角影響的區別

    Figure  1.  Effect of gravity on the interface between solids and liquids, and the effect of supergravity and pressure on the contact angle of solids and liquids

    圖  2  擴散系數(a)、擴散邊界層厚度(b)與重力系數關系曲線

    Figure  2.  Relationship between the diffusion coefficient (a) or thickness of the mass transfer diffusion layer (b) and gravity coefficient

    圖  3  攪拌上浮與超重力除雜示意圖。(a)攪拌上浮;(b)超重力除雜

    Figure  3.  Schematic of inclusion removal by gas bubble stirring compared with supergravity: (a) stirring and floating; (b) impurity removal under supergravity

    圖  4  超重力冶金研究實驗反應器

    Figure  4.  Laboratory instrumentation for supergravity metallurgy

    圖  5  超重力分離富集含鈦高爐渣中鈣鈦礦(CaTiO3)。(a)含鈦高爐渣熔析結晶規律;(b)超重力分離富集鈣鈦礦的掃描電鏡與能譜圖

    Figure  5.  Separation of perovskites (CaTiO3) in a titanium-bearing blast furnace slag by supergravity: (a) crystallization behavior of the titanium-bearing blast furnace slag; (b) energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) of separation of the perovskites by supergravity

    圖  6  不同條件下熔析結晶?超重力分離含鈦高爐渣中富鈦相

    Figure  6.  Selective crystallization and separation of titanium-rich phases in a titanium-bearing blast furnace slag by supergravity

    圖  7  超重力分離轉爐釩渣中釩鐵尖晶石(FeV2O4)

    Figure  7.  Separation of vanadium–iron spinel (FeV2O4) in a vanadium-bearing converter slag by supergravity

    圖  8  超重力梯級分離稀土精礦熔渣中不同稀土相

    Figure  8.  Stepwise separation scheme of different rare-earth phases in a rare earth melt by supergravity

    圖  9  超重力分步分離含硼渣中遂安石(Mg2B2O5)。(a)步驟 I: T=1443K, G=1000;(b)步驟 II: T=1523K, G=1000;(c)相應的電鏡圖及X射線衍射圖

    Figure  9.  Two-step separation of suanite (Mg2B2O5) in a boron-bearing slag by supergravity: (a) step I: T = 1443 K, G = 1000; (b) step II: T = 1523 K, G = 1000; (c) SEM and XRD

    圖  10  超重力渣/鐵低溫分離。(a)高磷鮞狀赤鐵礦;(b)稀土共生鐵礦

    Figure  10.  Separation of slag and iron at low-temperature by supergravity: (a) high-phosphorus oolitic hematite; (b) rare earth symbiotic iron ore

    圖  11  超重力分離冶煉渣中金屬液滴。(a)銅渣;(b)鋼渣;(c)二次鋁灰

    Figure  11.  Separation of various metal droplets from smelting slags by supergravity: (a) copper slag; (b) steel-making slag; (c) secondary aluminum ash

    圖  12  超重力處理危固冶煉渣。(a)鋁鎂合金精煉渣;(b)不銹鋼冶煉渣

    Figure  12.  Treatment of hazardous smelting slags by supergravity: (a) reuse of an aluminum–magnesium alloy; (b) stainless steel slag for chromium fixation

    圖  13  有色冶金多金屬超重力分離富集。(a)Pb?Sb二元合金;(b)貴鉛Pb?Sb?Bi?Ag多步分離示意圖

    Figure  13.  Separation and enrichment of nonferrous metals by supergravity technology: (a) Pb–Sb alloy; (b) schematic process of a Pb–Sb–Bi–Ag alloy

    圖  14  超重力強化分離廢舊線路板中各類金屬。(a)超重力分步熔融分離;(b)混合金屬超重力凝固

    Figure  14.  Supergravity-enhanced separation of metals from waste printed circuit boards (WPCBs): (a) stepwise separation of metals by supergravity; (b) solidification of WPCB alloys in supergravity fields

    圖  15  超重力脫除鋼水中夾雜物。(a)重力系數對鋼水中SiO2夾雜脫除所需時間的影響(夾雜物上浮30 mm);(b)718高溫合金樣超重力處理前后夾雜物分布情況

    Figure  15.  Removal of inclusions in liquid steel by supergravity: (a) effect of the gravity coefficient on the time required for removing SiO2 inclusions from liquid steel (depth 30 mm); (b) distribution of inclusions in 718 superalloy specimens before and after supergravity treatment

    圖  16  Al?2.8%Fe鋁液自然沉降除雜和超重力除雜效果對比

    Figure  16.  Macro and microstructures of an Al?2.8%Fe alloy solidified in normal-gravity and supergravity fields

    圖  17  超重力熔析分離Al?Si熔體中結晶硅

    Figure  17.  Separation of silicon crystals from an Al–Si melt by supergravity-induced liquidation

    圖  18  重力系數對不同金屬凝固晶粒尺寸及力學性能的影響。(a)純鋁;(b)Cr12鋼;(c)Al?6%Cu合金;(d)Cu?11%Sn合金

    Figure  18.  Effect of the gravity coefficient on the grain size and mechanical properties of solidified metals: (a) pure Al; (b) Cr12 steel; (c) Al?6%Cu alloy; (d) Cu?11%Sn alloy

    圖  19  超重力凝固制備梯度功能材料。 (a)離心凝固Al/Al3Zr功能梯度材料示意圖;(b)超重力輔助自蔓延高溫合成FeCrNi/TiC梯度金屬陶瓷復合材料

    Figure  19.  Fabrication of functionally gradient materials (FGMs) by supergravity solidification: (a) schematic illustration of Al/Al3Zr FGM rings prepared by the centrifugal solid-particle method; (b) FeCrNi/TiC gradient composite materials prepared by supergravity-enhanced self-propagating high-temperature synthesis

    圖  20  基因組材料高通量制備及材料成分優化設計. (a)Mg56Al30Li7Cu7合金超重力凝固后不同區域的微觀組織;(b)Al2.0CrCuFeNi2高熵合金超重力凝固后不同區域的微觀組織及抗壓強度

    Figure  20.  High-throughput fabrication of genomic materials and optimization of material compositions: (a) microstructure from different regions of a Mg56Al30Li7Cu7 alloy solidified in supergravity fields; (b) microstructure and compressive strength in different regions of an Al2.0CrCuFeNi2 high-entropy alloy solidified in supergravity fields

    圖  21  超重力滲流法制備的80%W?Cu合金宏觀與微觀形貌以及重力系數對合金性能的影響

    Figure  21.  Macro and microstructure of an 80%W?Cu alloy fabricated by supergravity-induced infiltration, and the effect of the gravity coefficient on its properties

    圖  22  超重力滲流制備的Al–SiC梯度復合材料宏觀及微觀形貌

    Figure  22.  Macro and microstructure of Al–SiC gradient composite materials fabricated by supergravity-induced infiltration

    圖  23  以氯化鈉顆粒、空芯玻璃漂珠、PU海綿-石膏為預制體經超重力滲流制備的泡沫鋁及重力系數對泡沫鋁相對密度和結構的影響

    Figure  23.  Aluminum foams fabricated by supergravity-induced infiltration using NaCl particles, glass cenospheres, and a PU sponge-plaster as preforms, and the effect of the gravity coefficient on the relative density and structure of the prepared aluminum foams

    圖  24  超重力場中離子傳遞方向與銅電沉積電流效率產物結構的相互關系

    Figure  24.  Current efficiencies and deposited structure of Cu electrodeposition in a supergravity field with different mass-transfer directions

    圖  25  鎳鍍膜的AFM表面形貌圖及重力系數對鎳鍍膜的粗糙度、硬度、韌性和抗拉強度的影響

    Figure  25.  AFM image, roughness, hardness, toughness, and tensile strength of nickel foils prepared under supergravity electrodeposition

    圖  26  常重力與超重力條件下,NiMo鍍膜的截面微觀結構比較,以及超重力條件下多孔金屬鍍膜的形成機理

    Figure  26.  Crosssection of NiMo films electrodeposited at different gravity coefficients, and the formation mechanism of porous metal films in supergravity fields

    圖  27  超重力與常重力條件下鎳基表面NiO薄膜的SEM和AFM照片

    Figure  27.  Scanning electron and atomic force microscopy images of the coated NiO layer on a nickel base by electrophoretic deposition under supergravity compared with a control sample

    圖  28  金屬液除雜凈化設備結構原理圖。(a)立式批處理;(b)臥式連續處理;(c)滲流過濾或溢流

    Figure  28.  Schematic of instruments used for the purification of liquid metal: (a) vertical batch reactor; (b) horizontal continuous processing reactor; (c) percolation filtration or overflow reactor

    圖  29  冶金熔渣分離有價組分設備結構原理圖。(a)臥式連續處理;(b)臥式批處理

    Figure  29.  Schematic of instruments used for separating valuable components from metallurgical slags: (a) horizontal continuous processing reactor; (b) horizontal batch reactor

    圖  30  廢舊線路板金屬富集料多金屬分步分離設備結構原理設計圖

    Figure  30.  Schematic of a stepwise centrifugal separation apparatus for separating metals from waste printed circuit boards

    圖  31  離心超重力滲流鑄造裝置示意圖

    Figure  31.  Schematic of filtration casting by a centrifugal device

    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Shen Q Z, Du J M. Metallurgy Transport Theory. Beijing: Metallurgical Industry Press, 2006

    沈巧珍. 杜建明. 冶金傳輸原理. 北京: 冶金工業出版社, 2006
    [2] Song Z M, Zhang H. Present situation of producing and quality for bearing steel in China. J Iron Steel Res, 2000, 12(4): 59 doi: 10.3321/j.issn:1001-0963.2000.04.014

    宋志敏, 張虹. 我國軸承鋼生產及質量現狀. 鋼鐵研究學報, 2000, 12(4):59 doi: 10.3321/j.issn:1001-0963.2000.04.014
    [3] Zhao W X, Zhao N Q, Guo X Q. Study progress for new type functional materials of foam aluminum. Heat Treat Met, 2004, 29(6): 7 doi: 10.3969/j.issn.0254-6051.2004.06.003

    趙萬祥, 趙乃勤, 郭新權. 新型功能材料泡沫鋁的研究進展. 金屬熱處理, 2004, 29(6):7 doi: 10.3969/j.issn.0254-6051.2004.06.003
    [4] Reddy A C, Zitoun E. Tensile properties and fracture behavior of 6061/Al2O3 metal matrix composites fabricated by low pressure die casting process. Int J Mater Sci, 2011, 6(2): 147
    [5] Wang M Y, Wang Z, Guo Z C. Preparation of electrolytic copper powders with high current efficiency enhanced by super gravity field and its mechanism. Trans Nonferrous Met Soc China, 2010, 20(6): 1154 doi: 10.1016/S1003-6326(09)60271-5
    [6] Zhang Z L, Yang G, Yang Y. Development status of centrifugal casting. Foundry Technol, 2010, 31(11): 1517

    張澤磊, 楊剛, 楊屹. 離心鑄造研究現狀. 鑄造技術, 2010, 31(11):1517
    [7] Ramshaw C. The opportunities for exploiting centrifugal fields. Heat Recovery Syst CHP, 1993, 13(6): 493 doi: 10.1016/0890-4332(93)90003-E
    [8] Jia S Z. Thermodynamic analysis of gravitational field and gravitational chemical potential. Univ Chem, 1997, 12(5): 21 doi: 10.3866/PKU.DXHX19970507

    賈世忠. 重力場熱力學分析和重力化學勢. 大學化學, 1997, 12(5):21 doi: 10.3866/PKU.DXHX19970507
    [9] Wang M Y, Wang Z, Gong X Z, et al. The intensification technologies to water electrolysis for hydrogen production - A review. Renew Sustain Energy Rev, 2014, 29: 573 doi: 10.1016/j.rser.2013.08.090
    [10] Xing H Q, Guo Z C, Wang Z, et al. Electrochemical behavior of aqueous electrochemical reactions in super gravity field. Chem J Chin Univ, 2007, 28(9): 1765 doi: 10.3321/j.issn:0251-0790.2007.09.045

    邢海青, 郭占成, 王志, 等. 超重力場中水溶液的電化學反應特性. 高等學校化學學報, 2007, 28(9):1765 doi: 10.3321/j.issn:0251-0790.2007.09.045
    [11] Liu T, Guo Z C, Wang Z, et al. Effects of gravity on the electrodeposition and characterization of nickel foils. Int J Miner Metall Mater, 2011, 18(1): 59 doi: 10.1007/s12613-011-0400-6
    [12] Wang M Y, Wang Z, Guo Z C. Supergravity technology: New opportunity for the advance of electrochemical industry. J Eng Stud, 2015, 7(3): 289

    王明涌, 王志, 郭占成. 超重力技術: 電化學工業新契機. 工程研究——跨學科視野中的工程, 2015, 7(3):289
    [13] Wang M Y, Wang Z, Guo Z C. Deposit structure and kinetic behavior of metal electrodeposition under enhanced gravity-induced convection. J Electroanal Chem, 2015, 744: 25 doi: 10.1016/j.jelechem.2015.03.003
    [14] Zhang L, Guo X, Gao J W, et al. Effect of electromagnetic stirring on microstructure and mechanical properties of TiB2 particle-reinforced steel. Acta Metall Sin, 2020, 56(9): 1239

    張林, 郭曉, 高建文, 等. 電磁攪拌對TiB2顆粒增強鋼組織和力學性能的影響. 金屬學報, 2020, 56(9):1239
    [15] Li J C. Technical Fundament on Separating Vanadium, Titanium and Cerium Compounds from Molten Slag by Super Gravity [Dissertation]. Beijing: University of Science and Technology Beijing, 2015

    李軍成. 熔渣中釩、鈦和鈰化合物超重力分離技術基礎[學位論文]. 北京: 北京科技大學, 2015
    [16] Wen X C. Fundamental Research on the Separation of Lead-Bismuth-Silver Alloys by Super-Gravity [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

    溫小椿. 鉛鉍銀系合金物料超重力熔析分離的基礎研究[學位論文]. 北京: 北京科技大學, 2021
    [17] Li C. Fundamental Research on Treatment of Molten Steel and Steelmaking Slag with Super Gravity [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    李沖. 超重力處理鋼液及鋼渣基礎研究[學位論文]. 北京: 北京科技大學, 2017
    [18] Du Y, Gao J T, Lan X, et al. Recovery of rutile from Ti-Bearing blast furnace slag through phase transformation and super-gravity separation for dielectric material. Ceram Int, 2020, 46(7): 9885 doi: 10.1016/j.ceramint.2019.12.264
    [19] Liu X L, Wei Z H, Feng C, et al. Study on preparation and properties of magnetic fluid. Phys Exp, 2012, 32(8): 6 doi: 10.3969/j.issn.1005-4642.2012.08.002

    劉曉龍, 韋宗慧, 馮超, 等. 磁流體制備及性質研究. 物理實驗, 2012, 32(8):6 doi: 10.3969/j.issn.1005-4642.2012.08.002
    [20] Gao J, Lu Y, Wang F, et al. Effects of super-gravity field on precipitation and growth kinetics of perovskite crystals in CaO?TiO2?SiO2?Al2O3?MgO melt. Ironmak Steelmak, 2017, 44(9): 692 doi: 10.1080/03019233.2016.1228740
    [21] Li J C, Guo Z C, Gao J T, et al. Evaluation of isothermal separating perovskite phase from CaO?TiO2?SiO2?Al2O3?MgO melt by super gravity. Metall Mater Trans B, 2014, 45(4): 1171 doi: 10.1007/s11663-014-0062-7
    [22] Deng J, Xue X, Liu G G. Current situation and development of comprehensive utilization of vanadium-bearing titanomagnetite at Pangang. J Mater Metall, 2007, 6(2): 83 doi: 10.3969/j.issn.1671-6620.2007.02.001

    鄧君, 薛遜, 劉功國. 攀鋼釩鈦磁鐵礦資源綜合利用現狀與發展. 材料與冶金學報, 2007, 6(2):83 doi: 10.3969/j.issn.1671-6620.2007.02.001
    [23] Gao J T, Zhong Y W, Guo Z C. Selective separation of perovskite (CaTiO3) from titanium bearing slag melt by super gravity. ISIJ Int, 2016, 56(8): 1352 doi: 10.2355/isijinternational.ISIJINT-2016-113
    [24] Du Y, Gao J T, Lan X, et al. Selective precipitation and in situ separation of rutile crystals from titanium bearing slag melt in a super-gravity field. CrystEngComm, 2018, 20(27): 3868 doi: 10.1039/C8CE00678D
    [25] Lu Y, Gao J T, Wang F Q, et al. Separation of anosovite from modified titanium-bearing slag melt in a reducing atmosphere by supergravity. Metall Mater Trans B, 2017, 48(2): 749 doi: 10.1007/s11663-016-0868-6
    [26] Du Y, Gao J T, Lan X, et al. Sustainable recovery of ultrafine TiC powders from molten Ti-bearing slag under super-gravity field. J Clean Prod, 2021, 289: 125785 doi: 10.1016/j.jclepro.2021.125785
    [27] Li J C, Guo Z C, Gao J T. Laboratory assessment of isothermal separation of V containing spinel phase from vanadium slag by centrifugal casting. Ironmak Steelmak, 2014, 41(9): 710 doi: 10.1179/1743281214Y.0000000185
    [28] Lan X, Gao J T, Li Y, et al. Thermodynamics and kinetics of REEs in CaO?SiO2?CaF2?Ce2O3 system: A theoretical basis toward sustainable utilization of REEs in REE-Bearing slag. Ceram Int, 2021, 47(5): 6130 doi: 10.1016/j.ceramint.2020.10.192
    [29] Lan X, Gao J T, Li Y, et al. Phase equilibria of CaO?SiO2?CaF2?P2O5?Ce2O3 system and formation mechanism of britholite. Ceram Int, 2021, 47(9): 11966 doi: 10.1016/j.ceramint.2021.01.038
    [30] Lan X, Gao J T, Du Y, et al. Thermodynamics and crystallization kinetics of REEs in CaO?SiO2?Ce2O3 system. J Am Ceram Soc, 2020, 103(4): 2845 doi: 10.1111/jace.16946
    [31] Lan X, Gao J T, Li Y, et al. A green method of respectively recovering rare earths (Ce, La, Pr, Nd) from rare-earth tailings under super-gravity. J Hazard Mater, 2019, 367: 473 doi: 10.1016/j.jhazmat.2018.12.118
    [32] Li Y, Gao J T, Lan X, et al. Direct preparation of magnesium borate (Mg2B2O5) ceramic from boron-bearing slag: Super-gravity separation and microwave dielectric properties. J Eur Ceram Soc, 2021, 41(3): 1954 doi: 10.1016/j.jeurceramsoc.2020.11.004
    [33] Li Y, Gao J T, Du Y, et al. Competitive crystallization of B, Si, and Mg and two-stage separation of olivine and suanite from boron-bearing slag in supergravity field. Miner Eng, 2020, 155: 106471 doi: 10.1016/j.mineng.2020.106471
    [34] Li Y, Gao J T, Huang Z L, et al. A green method for selective crystallization and extraction of suanite (Mg2B2O5) crystals from boron bearing slag under super-gravity. Ceram Int, 2019, 45(8): 10961 doi: 10.1016/j.ceramint.2019.02.178
    [35] Hou Y B, Hong L K, Sun C J, et al. Study on alkali fusion process of V-Ti magnetite concentrate at lower temperature. Iron Steel Vanadium Titanium, 2020, 41(2): 6

    侯耀斌, 洪陸闊, 孫彩嬌, 等. 釩鈦磁鐵礦堿熔低溫冶煉工藝研究. 鋼鐵釩鈦, 2020, 41(2):6
    [36] Li J, Wu E H, Hou J, et al. Study on direct reduction of vanadium and titanium iron ore concentrate. Multipurp Util Miner Resour, 2018(6): 53 doi: 10.3969/j.issn.1000-6532.2018.06.0010

    李軍, 吳恩輝, 侯靜, 等. 釩鈦鐵精礦煤基直接還原試驗研究. 礦產綜合利用, 2018(6):53 doi: 10.3969/j.issn.1000-6532.2018.06.0010
    [37] Guo L, Gao J T, Zhong S P, et al. Phosphorus migration mechanism between iron and high phosphorus gangue phase at high temperatures. J Iron Steel Res Int, 2019, 26(2): 113 doi: 10.1007/s42243-018-0079-2
    [38] Tang H Q, Ma L, Wang J W, et al. Slag/metal separation process of Gas-reduced oolitic High-phosphorus iron ore fines. J Iron Steel Res Int, 2014, 21(11): 1009 doi: 10.1016/S1006-706X(14)60176-X
    [39] Zhao Z L, Tang H Q, Guo Z C. Dephosphorization of high-level phosphorus iron ore by gas-based reduction and melt separation. J Univ Sci Technol Beijing, 2009, 31(8): 964 doi: 10.3321/j.issn:1001-053X.2009.08.004

    趙志龍, 唐惠慶, 郭占成. 高磷鐵礦氣基還原冶煉低磷鐵. 北京科技大學學報, 2009, 31(8):964 doi: 10.3321/j.issn:1001-053X.2009.08.004
    [40] Gao J T, Zhong Y W, Guo L, et al. Separation of iron phase and P-bearing slag phase from gaseous-reduced, high-phosphorous oolitic iron ore at 1473 K (1200 ℃) by super gravity. Metall Mater Trans B, 2016, 47(2): 1080 doi: 10.1007/s11663-015-0575-8
    [41] Gao J T, Guo L, Zhong Y W, et al. Removal of phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super-gravity field. Int J Miner Metall Mater, 2016, 23(7): 743 doi: 10.1007/s12613-016-1288-y
    [42] Gao J T, Guo L, Guo Z C. Concentrating of iron, slag and apatite phases from high phosphorous iron ore gaseous reduction product at 1473 K by super gravity. ISIJ Int, 2015, 55(12): 2535 doi: 10.2355/isijinternational.ISIJINT-2015-416
    [43] Gao J T, Lan X, Wang F Q, et al. Separation of rare earth and fluorite phases from Bayan obo ore at low temperature by super-gravity. ISIJ Int, 2018, 58(2): 364 doi: 10.2355/isijinternational.ISIJINT-2017-034
    [44] Wang F Q, Gao J T, Lan X, et al. Direct concentration of iron, slag and britholite-(Ce, La, Pr, Nd) at 1473 K in a super gravitational field. ISIJ Int, 2017, 57(1): 200 doi: 10.2355/isijinternational.ISIJINT-2016-482
    [45] Zhou H H, Liu G J, Zhang L Q, et al. Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process. J Hazard Mater, 2021, 401: 123293 doi: 10.1016/j.jhazmat.2020.123293
    [46] Zhou C G, Yang H Z, Ai L Q, et al. Research status and prospect of recycling technology of converter slag containing phosphorus. Iron Steel, 2021, 56(2): 22

    周朝剛, 楊會澤, 艾立群, 等. 轉爐含磷鋼渣循環利用技術的研究現狀及展望. 鋼鐵, 2021, 56(2):22
    [47] Lan X, Gao J T, Huang Z L, et al. Rapid separation of copper phase and iron-rich phase from copper slag at low temperature in a super-gravity field. Metall Mater Trans B, 2018, 49(3): 1165 doi: 10.1007/s11663-018-1235-6
    [48] Gao J T, Huang Z L, Wang Z W, et al. Recovery of crown zinc and metallic copper from copper smelter dust by evaporation, condensation and super-gravity separation. Sep Purif Technol, 2020, 231: 115925 doi: 10.1016/j.seppur.2019.115925
    [49] Gao J, Zhong Y, Wang F, et al. Effect of super-gravity field on metal-slag separation. Ironmak Steelmak, 2017, 44(7): 492 doi: 10.1080/03019233.2016.1216631
    [50] Wen X C, Guo L, Bao Q P, et al. Efficient separation of lead and antimony metals from the Pb?Sb alloy by super-gravity technology. J Alloys Compd, 2019, 806: 1012 doi: 10.1016/j.jallcom.2019.07.211
    [51] Liu C, Qiu K Q. Separating lead-antimony alloy by fractional crystallization using directional lifting process. J Alloys Compd, 2015, 636: 282 doi: 10.1016/j.jallcom.2015.02.190
    [52] Xu Y. Study on Crystallization Separation of Pb-Sb Alloy [Dissertation]. Changsha: Central South University, 2013

    許妍. 鉛銻合金的結晶分離研究[學位論文]. 長沙: 中南大學, 2013
    [53] Fu B B, Qiu K Q. Vacuum dynamic oxidation process for separating Pb?Sb alloy. Vacuum, 2018, 149: 31
    [54] Zhang G J, Liu Y C, Dai Y N. Study on vacuum distillation separation of lead-antimony alloy. Nonferrous Met (Extr Metall), 1989(4): 21

    張國靖, 劉永成, 戴永年. 鉛銻合金真空蒸餾分離研究. 有色金屬(冶煉部分), 1989(4):21
    [55] Wen X C, Guo L, Bao Q P, et al. Separation of silver from bismuth melt in a centrifugal separator with zinc as an additive. Miner Eng, 2020, 157: 106548 doi: 10.1016/j.mineng.2020.106548
    [56] Wen X C, Bao Q P, Guo L, et al. The introduction of super-gravity into optimization separation of bismuth and zinc from crude bismuth melt. Chem Eng Process Process Intensif, 2021, 160: 108266 doi: 10.1016/j.cep.2020.108266
    [57] Wen X C, Yang Y R, Bao Q P, et al. A green method for extraction of Bi and Pb from bismuth-rich melt by super-gravity. Chem Eng Res Des, 2020, 164: 209 doi: 10.1016/j.cherd.2020.09.027
    [58] Wen X, Guo L, Bao Q, et al. Rapid Removal of the Copper Impurity from Bismuth-Copper Alloy Melts via Super-Gravity Separation. Int J Miner Metall Mater, 2020: 1
    [59] Wen X C, Guo L, Bao Q P, et al. Super-gravity field enrichment of silver and antimony contained in Pb–Ag–Sb melts //11th International Symposium on High-Temperature Metallurgical Processing. San Diego, 2020: 1001
    [60] Hao J J, Wang Y S, Wu Y F, et al. Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resour Conserv Recycl, 2020, 157: 104787 doi: 10.1016/j.resconrec.2020.104787
    [61] Yang D Z, Chu Y Y, Wang J B, et al. Completely separating metals and nonmetals from waste printed circuit boards by slurry electrolysis. Sep Purif Technol, 2018, 205: 302 doi: 10.1016/j.seppur.2018.04.069
    [62] Meng L, Wang Z, Zhong Y W, et al. Supergravity separation for recovering metals from waste printed circuit boards. Chem Eng J, 2017, 326: 540 doi: 10.1016/j.cej.2017.04.143
    [63] Meng L, Guo L, Zhong Y W, et al. Concentration of precious metals from waste printed circuit boards using supergravity separation. Waste Manag, 2018, 82: 147 doi: 10.1016/j.wasman.2018.10.024
    [64] Meng L, Wang Z, Zhong Y W, et al. Supergravity separation of Pb and Sn from waste printed circuit boards at different temperatures. Int J Miner Metall Mater, 2018, 25(2): 173 doi: 10.1007/s12613-018-1560-4
    [65] Meng L, Zhong Y W, Wang Z, et al. Supergravity separation for Cu recovery and precious metal concentration from waste printed circuit boards. ACS Sustain Chem Eng, 2018, 6(1): 186 doi: 10.1021/acssuschemeng.7b02204
    [66] Chen B, He J, Sun X, et al. Liquid-liquid phase separation of Fe?Cu?Pb alloy and its application in metal separation and recycling of waste printed circuit boards. Acta Metall Sin, 2019, 55(6): 751
    [67] Guo L, Gao J T, Li C, et al. Removal of fine SiO2 composite inclusions from 304 stainless steel using super-gravity. ISIJ Int, 2020, 60(2): 238 doi: 10.2355/isijinternational.ISIJINT-2019-301
    [68] Shi A J, Wang Z, Shi C B, et al. Supergravity-induced separation of oxide and nitride inclusions from inconel 718 superalloy melt. ISIJ Int, 2020, 60(2): 205 doi: 10.2355/isijinternational.ISIJINT-2019-321
    [69] Song G Y, Song B, Guo Z C, et al. Separation of non-metallic inclusions from a Fe?Al?O melt using a super-gravity field. Metall Mater Trans B, 2018, 49(1): 34 doi: 10.1007/s11663-017-1099-1
    [70] Li C, Gao J T, Wang Z, et al. Separation of fine Al2O3 inclusion from liquid steel with super gravity. Metall Mater Trans B, 2017, 48(2): 900 doi: 10.1007/s11663-016-0905-5
    [71] Sun S T, Guo Z C, Tang H Q, et al. Super-gravity separation of iron-rich phases from molten aluminum. J Chinese Rare Earth Soc, 2012, 30: 560

    孫士瞳, 郭占成, 唐惠慶, 等. 利用超重力分離鋁熔體中富鐵相. 中國稀土學報, 2012, 30:560
    [72] Song G Y, Song B, Yang Z B, et al. Removal of inclusions from molten aluminum by supergravity filtration. Metall Mater Trans B, 2016, 47(6): 3435 doi: 10.1007/s11663-016-0775-x
    [73] Moats M, Alagha L, Awuah-Offei K. Towards resilient and sustainable supply of critical elements from the copper supply chain: A review. J Clean Prod, 2021, 307: 127207 doi: 10.1016/j.jclepro.2021.127207
    [74] Zhao L X, Guo Z C, Wang Z, et al. Removal of low-content impurities from Al by super-gravity. Metall Mater Trans B, 2010, 41(3): 505 doi: 10.1007/s11663-010-9376-2
    [75] Guo L, Wen X C, Bao Q P, et al. Removal of tramp elements within 7075 alloy by super-gravity aided rheorefining method. Metals, 2018, 8(9): 701 doi: 10.3390/met8090701
    [76] Contatori C, Domingues N I Jr, Barreto R L Jr, et al. Effect of Mg and Cu on microstructure, hardness and wear on functionally graded Al-19Si alloy prepared by centrifugal casting. J Mater Res Technol, 2020, 9(6): 15862 doi: 10.1016/j.jmrt.2020.11.050
    [77] Meng L, Wang Z, Wang L, et al. Novel and efficient purification of scrap Al?Mg alloys using supergravity technology. Waste Manag, 2021, 119: 22 doi: 10.1016/j.wasman.2020.09.027
    [78] Wang Z, Gao J T, Meng L, et al. Recovery of zinc from Zn–Al–Fe melt by super-gravity separation. ISIJ Int, 2018, 58(6): 1175 doi: 10.2355/isijinternational.ISIJINT-2017-561
    [79] Wang Z, Gao J T, Shi A J, et al. Recovery of zinc from galvanizing dross by a method of super-gravity separation. J Alloys Compd, 2018, 735: 1997 doi: 10.1016/j.jallcom.2017.11.385
    [80] Sun N J, Wang Z, Guo L, et al. Efficient separation of reinforcements and matrix alloy from aluminum matrix composites by supergravity technology. J Alloys Compd, 2020, 843: 155814 doi: 10.1016/j.jallcom.2020.155814
    [81] Li J W, Guo Z C, Li J C, et al. Super gravity separation of purified Si from solvent refining with the Al?Si alloy system for solar grade silicon. Silicon, 2015, 7(3): 239 doi: 10.1007/s12633-014-9197-z
    [82] Li J W, Guo Z C, Tang H Q, et al. Removal of impurities from metallurgical grade silicon by liquation refining method. High Temp Mater Process, 2013, 32(5): 503 doi: 10.1515/htmp-2012-0157
    [83] Hu L, Wang Z, Gong X Z, et al. Purification of metallurgical-grade silicon by Sn?Si refining system with calcium addition. Sep Purif Technol, 2013, 118: 699 doi: 10.1016/j.seppur.2013.08.013
    [84] Zhao L X, Wang Z, Guo Z C, et al. Low-temperature purification process of metallurgical silicon. Trans Nonferrous Met Soc China, 2011, 21(5): 1185 doi: 10.1016/S1003-6326(11)60841-8
    [85] Yang Y H. Fundamental Study on Solidification Structure Refinement and Elements Segregation of Metals by Super Gravity [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    楊玉厚. 超重力對金屬凝固組織細化及元素偏析行為的基礎研究[學位論文]. 北京: 北京科技大學, 2018
    [86] Zhao L X, Guo Z C, Wang Z, et al. Influences of super-gravity field on aluminum grain refining. Metall Mater Trans A, 2010, 41(3): 670 doi: 10.1007/s11661-009-0130-9
    [87] Shailesh P, Sundarrajan S, Komaraiah M. Optimization of process parameters of Al?Si alloy by centrifugal casting technique using taguchi design of experiments. Procedia Mater Sci, 2014, 6: 812 doi: 10.1016/j.mspro.2014.07.098
    [88] Yang Y H, Song B, Yang Z B, et al. The refining mechanism of super gravity on the solidification structure of Al?Cu alloys. Materials, 2016, 9(12): 1001 doi: 10.3390/ma9121001
    [89] Yang Y H, Song B, Cheng J, et al. Effect of super-gravity field on grain refinement and tensile properties of Cu?Sn alloys. ISIJ Int, 2018, 58(1): 98 doi: 10.2355/isijinternational.ISIJINT-2017-233
    [90] Gan Z H, Wu H, Sun Y, et al. Influence of Co contents and super-gravity field on refinement of in situ ultra-fined fibers in Al?2.5Ni eutectic alloys. J Alloys Compd, 2020, 822: 153607 doi: 10.1016/j.jallcom.2019.153607
    [91] Wu H, Wu C D, Lu Y H, et al. Toward enhanced strength and ductility of Al?14.5Si alloy via solidification under super-gravity field. Adv Eng Mater, 2020, 22(11): 2000360
    [92] Rajan T P D, Pai B C. Formation of solidification microstructures in centrifugal cast functionally graded aluminium composites. Trans Indian Inst Met, 2009, 62(4-5): 383 doi: 10.1007/s12666-009-0067-0
    [93] Chirita G, Soares D, Silva F S. Advantages of the centrifugal casting technique for the production of structural components with Al?Si alloys. Mater Des, 2008, 29(1): 20 doi: 10.1016/j.matdes.2006.12.011
    [94] Fukui Y. Fundamental investigation of functionally gradient material manufacturing system using centrifugal force. JSME Int J Ser 3 Vib Control Eng Eng Ind, 1991, 34(1): 144
    [95] Rajan T P D, Pillai R M, Pai B C. Centrifugal casting of functionally graded aluminium matrix composite components. Int J Cast Met Res, 2008, 21(1-4): 214 doi: 10.1179/136404608X361972
    [96] Watanabe Y, Yamanaka N, Fukui Y. Wear behavior of Al?Al3Ti composite manufactured by a centrifugal method. Metall Mater Trans A, 1999, 30(12): 3253 doi: 10.1007/s11661-999-0235-1
    [97] Huang X Y, Liu C M, Lü X J, et al. Aluminum alloy pistons reinforced with SiC fabricated by centrifugal casting. J Mater Process Technol, 2011, 211(9): 1540 doi: 10.1016/j.jmatprotec.2011.04.006
    [98] Amanov A. Improvement in mechanical properties and fretting wear of Inconel 718 superalloy by ultrasonic nanocrystal surface modification. Wear, 2020, 446-447: 203208 doi: 10.1016/j.wear.2020.203208
    [99] Zhao H W, Li J H, Guo S B, et al. Fast preparation of ZTA?TiC?FeCrNi cermets by high-gravity combustion synthesis. Ceram Int, 2017, 43(9): 6904 doi: 10.1016/j.ceramint.2017.02.112
    [100] L?ffler J F, Bossuyt S, Peker A, et al. Eutectic isolation in Mg?Al?Cu?Li(?Y) alloys by centrifugal processing. Philos Mag, 2003, 83(24): 2797 doi: 10.1080/1478643031000122152
    [101] L?ffler J F, Johnson W L. Crystallization of Mg?Al and Al-based metallic liquids under ultra-high gravity. Intermetallics, 2002, 10(11-12): 1167 doi: 10.1016/S0966-9795(02)00155-3
    [102] Izadi H, Nolting A, Munro C, et al. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol, 2013, 213(11): 1900 doi: 10.1016/j.jmatprotec.2013.05.012
    [103] Dong C G, Wang R C, Chen Y X, et al. Near-net shaped Al/SiCP composites via vacuum-pressure infiltration combined with gelcasting. Trans Nonferrous Met Soc China, 2020, 30(6): 1452 doi: 10.1016/S1003-6326(20)65310-9
    [104] Benavente D, Garc??a del Cura M A, Fort R, et al. Thermodynamic modelling of changes induced by salt pressure crystallisation in porous media of stone. J Cryst Growth, 1999, 204(1-2): 168 doi: 10.1016/S0022-0248(99)00163-3
    [105] Israelachvili J N. Intermolecular and Surface Forces. Amsterdam: Elsevier Press, 2011
    [106] Zhang N, Wang Z, Guo L, et al. Rapid fabrication of W?Cu composites via low-temperature infiltration in supergravity fields. J Alloys Compd, 2019, 809: 151782 doi: 10.1016/j.jallcom.2019.151782
    [107] Chang K, Gao J T, Wang Z, et al. Manufacturing 3-D open-cell aluminum foam via infiltration casting in a super-gravity field. J Mater Process Technol, 2018, 252: 705 doi: 10.1016/j.jmatprotec.2017.10.032
    [108] Wang Z, Gao J T, Chang K, et al. Manufacturing of open-cell aluminum foams via infiltration casting in super-gravity fields and mechanical properties. RSC Adv, 2018, 8(29): 15933 doi: 10.1039/C7RA13689G
    [109] Chang K. Preparation of Porous Aluminum Foam by Infiltration Casting in a Super-Gravity Field [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    常寬. 超重力滲流法制備多孔泡沫鋁材料[學位論文]. 北京: 北京科技大學, 2017
    [110] Wang M Y, Xing H Q, Wang Z, et al. Investigation of chlor-alkali electrolysis intensified by super gravity. Acta Phys Chim Sin, 2008, 24(3): 520 doi: 10.3866/PKU.WHXB20080330

    王明涌, 邢海青, 王志, 等. 超重力強化氯堿電解反應. 物理化學學報, 2008, 24(3):520 doi: 10.3866/PKU.WHXB20080330
    [111] Guo Z C, Gong Y P, Lu W C. Electrochemical studies of nickel deposition from aqueous solution in super-gravity field. Sci China Ser E Technol Sci, 2007, 50(1): 39 doi: 10.1007/s11431-007-0001-9
    [112] Wang M Y, Wang Z, Gong X Z, et al. Progress toward electrochemistry intensified by using supergravity fields. ChemElectroChem, 2015, 2(12): 1879 doi: 10.1002/celc.201500333
    [113] Atobe M, Hitose S, Nonaka T. Chemistry in centrifugal fields: Part 1. Electrooxidative polymerization of aniline. Electrochem Commun, 1999, 1(7): 278
    [114] Atobe M, Murotani A, Hitose S, et al. Anodic polymerization of aromatic compounds in centrifugal fields. Electrochimica Acta, 2004, 50(4): 977 doi: 10.1016/j.electacta.2004.07.037
    [115] Murotani A, Atobe M, Fuchigami T. Electrochemical copolymerization of aromatic compounds in centrifugal fields. J Electrochem Soc, 2005, 152(10): D161 doi: 10.1149/1.2007108
    [116] Eftekhari A. Enhanced stability and conductivity of polypyrrole film prepared electrochemically in the presence of centrifugal forces. Synth Met, 2004, 142(1-3): 305 doi: 10.1016/j.synthmet.2003.08.002
    [117] Liu T, Guo Z C, Wang Z, et al. Structure and corrosion resistance of nickel foils deposited in a vertical gravity field. Appl Surf Sci, 2010, 256(22): 6634 doi: 10.1016/j.apsusc.2010.04.062
    [118] Wang M Y, Wang Z, Yu X T, et al. Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy, 2015, 40(5): 2173 doi: 10.1016/j.ijhydene.2014.12.022
    [119] Du J P, Shao G J, Qin X J, et al. High specific surface area MnO2 electrodeposited under supergravity field for supercapacitors and its electrochemical properties. Mater Lett, 2012, 84: 13 doi: 10.1016/j.matlet.2012.06.059
    [120] Liu T T, Shao G J, Ji M T. Electrodeposition of Ni(OH)2/Ni/graphene composites under supergravity field for supercapacitor application. Mater Lett, 2014, 122: 273 doi: 10.1016/j.matlet.2014.02.035
    [121] Gao J T, Guo Z C, Li J C. Method for Removing Nonmetallic Inclusions in Molten Steel by Means of Supergravity: China Patent, CN103602782A. 2014-02-26

    高金濤, 郭占成, 李軍成. 一種超重力去除鋼水中非金屬夾雜物的方法: 中國專利, CN103602782A. 2014-02-26
    [122] Guo Z C, Guo L, Wen X C, et al. Method and Device for Separating Lead-antimony Alloys by Supergravity: China Patent, CN109825719B. 2020-10-13)

    郭占成, 郭磊, 溫小椿, 等. 一種超重力分離鉛銻合金的方法及裝置: 中國專利, CN109825719B. 2020-10-13
    [123] Guo Z C, Gao J T, Lan X, et al. Method and Device for Achieving Low-temperature Quick Separating of Metallic Copper in Copper Slag Through Supergravity: China Patent, CN108165756B. 2019-03-29)

    郭占成, 高金濤, 蘭茜, 等. 一種超重力低溫快速分離銅渣中金屬銅的方法及裝置: 中國專利, CN108165756B. 2019-03-29
    [124] Guo Z C, Li J C, Gao J T. Method for Separating Titanium Resource in Titanium Slag Through Super Gravity: China Patent, CN103361451A. 2013-10-23

    郭占成, 李軍成, 高金濤. 一種超重力分離鈦渣中鈦資源的方法: 中國專利, CN103361451A. 2013-10-23
    [125] Guo Z C, Meng L, Guo L, et al. Method and Apparatus for Retrieving Valuable Metals Step by Step from Waste Printed Circuit Board Particle: U. S. Patent, US20180187285A1. 2020-5-19
    [126] Guo Z C, Wang Z, Gao J T, et al. Method and Device for Preparing Porous Foam Metal Through Super-gravity Seepage: China Patent, CN107574329B. 2019-06-04

    郭占成, 王哲, 高金濤, 等. 一種超重力滲流制備通孔泡沫金屬的方法及裝置: 中國專利, CN107574329B. 2019-06-04
  • 加載中
圖(31)
計量
  • 文章訪問數:  1805
  • HTML全文瀏覽量:  416
  • PDF下載量:  145
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-21
  • 網絡出版日期:  2021-10-25
  • 刊出日期:  2021-12-24

目錄

    /

    返回文章
    返回