Secondary cooling control based on solidification characteristics of non-quenched and tempered steel
-
摘要: 提出了基于非調質鋼凝固特性的二次冷卻控制方法。在凝固特性研究方面,運用高溫共聚焦顯微鏡、場發射掃描電鏡研究了冷速對第二相粒子析出規律的影響,并闡釋了先共析鐵素體的相變機制。結果表明,第二相粒子在1086 ℃開始析出,并在912 ℃達到峰值。當冷速在0.1~5 ℃·s?1時,隨著冷速增大,第二相粒子尺寸和數量均減小,且第二相粒子由晶界處的鏈狀分布向晶體內的彌散分布過渡,提高冷速有助于削弱第二相粒子的釘扎作用,強化鑄坯表層微觀組織;在二冷配水優化方面,建立了考慮鑄坯橫向水量分布的凝固傳熱數學模型,提出了基于非調質鋼凝固特性的二冷配水優化方案,即對出結晶器后的鑄坯實施強冷,以滿足控制第二相粒子析出的合理冷速和溫度區間的要求。工業試驗證實了技術方案的可行性。此外,研究表明,降低噴淋距離有助于改善連鑄坯橫向冷卻不均勻性。本研究統籌考慮二冷水量與噴淋距離對非調質鋼裂紋敏感性的影響,通過開展“縱?橫”凝固冷卻控制研究對連鑄二次冷卻進行系統優化,提出的二冷優化方案有助于改善連鑄坯的表面及皮下裂紋。Abstract: Due to the high crack sensitivity of non-quenched and tempered steel and the difficulty of accurate control of secondary cooling, surface cracks of the continuous casting strand occur frequently. A secondary cooling control method based on the solidification characteristics of non-quenched and tempered steel was proposed. For the solidification characteristics, the effect of the cooling rate on the secondary phase precipitation was studied using a confocal microscope and field emission scanning electron microscopy (FESEM), and the phase transformation mechanism of proeutectoid ferrite was clarified. Results show that the second-phase particles start to precipitate at 1086 °C and reach a peak at ~912 °C. When the cooling rate ranges from 0.1 to 5 °C·s?1, the size and volume fraction of the second-phase particles decrease with the increase of the cooling rate, and the second-phase particles transition from a chain-like distribution at the grain boundaries to a uniform distribution in the matrix. Increasing the cooling rate is helpful to weaken the pinning effect of the precipitates and strengthen the microstructure of the bloom surface. As for the secondary cooling optimization, a heat transfer and solidification model considering a transverse water distribution was established, and a secondary cooling optimization method based on the solidification characteristics of non-quenched and tempered steel was proposed. Strong cooling is performed after the strand leaves the mold to meet the requirements of a reasonable cooling rate and temperature range for controlling the precipitation of particles. Industrial trials confirm the feasibility of the technical solution. In addition, the study shows that reducing the spray distance can improve the transverse non-uniformity of secondary cooling water. In this study, the influence of the secondary cooling water amount and spray distance on the crack sensitivity of non-quenched and tempered steel was comprehensively considered, and the secondary cooling process was optimized by studying the “longitudinal?transverse” solidification cooling. The proposed optimization scheme contributes to the improvement of surface and subsurface cracks of continuous casting bloom.
-
表 1 SG02鋼主要化學成分(質量分數)
Table 1. Main chemical composition of the SG02 steel
% C Si Mn P S N V Nb Ti 0.43 0.45 1.41 0.01 0.0125 0.0115 0.07 0.017 0.015 表 2 SG02鋼主要連鑄工藝參數
Table 2. Main casting parameters of the SG02 steel
Item Value Sectional dimension/(mm×mm) 220×220 Casting speed/(m·min?1) 1.05 Pouring temperature/°C 1524 Superheat/℃ 35 Water flux of mold cooling/(m3·h?1) 150 Temperature difference of mold water/°C 7.0 Water flux of secondary cooling / (L·kg?1) 0.32 Water temperature/℃ 35 Ambient temperature/℃ 25 表 3 噴淋高度優化方案
Table 3. Spray height optimization scheme
mm Schemes Nozzle A Nozzle B Nozzle C Nozzle D Before optimization 165
(ModeⅠ)178
(ModeⅠ)170
(ModeⅡ)175
(ModeⅠ)After optimization 140
(ModeⅡ)145
(Mode Ⅲ)140
(Mode Ⅲ)135
(Mode Ⅲ)www.77susu.com -
參考文獻
[1] Yang Y, Zhou L Y, Jiang P, et al. Influence of die-forging deformation on microstructure of 1538MV non-quenched and tempered steel for crankshaft. Chin J Eng, 2018, 40(5): 579楊勇, 周樂育, 蔣鵬, 等. 模鍛變形對曲軸用非調質鋼1538MV顯微組織的影響. 工程科學學報, 2018, 40(5):579 [2] Lu J L, Wang Y P, Wang Q M, et al. Effect of MnS inclusions distribution on intragranular ferrite formation in medium carbon non-quenched and tempered steel for large-sized crankshaft. ISIJ Int, 2019, 59(3): 524 doi: 10.2355/isijinternational.ISIJINT-2018-509 [3] Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22劉志遠, 王重君, 蔡兆鎮, 等. 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝. 中國冶金, 2018, 28(3):22 [4] Suzuki K I, Miyagawa S, Saito Y, et al. Effect of microalloyed nitride forming elements on precipitation of carbonitride and high temperature ductility of continuously cast low carbon Nb containing steel slab. ISIJ Int, 1995, 35(1): 34 doi: 10.2355/isijinternational.35.34 [5] Du C, Zhang J, Wen J, et al. Hot ductility trough elimination through single cycle of intense cooling and reheating for microalloyed steel casting. Ironmak Steelmak, 2016, 43(5): 331 doi: 10.1179/1743281215Y.0000000044 [6] Baker T N. Microalloyed steels. Ironmak Steelmak, 2016, 43(4): 264 doi: 10.1179/1743281215Y.0000000063 [7] Dou K, Liu Q. A new cooling strategy in curved continuous casting process of vanadium micro-alloyed YQ450NQR1 steel bloom combining experimental and modeling approach. Metall Mater Trans A, 2020, 51(8): 3945 doi: 10.1007/s11661-020-05819-9 [8] Park J S, Ha Y S, Lee S J, et al. Dissolution and precipitation kinetics of Nb(C, N) in austenite of a low-carbon Nb-microalloyed steel. Metall Mater Trans A, 2009, 40(3): 560 doi: 10.1007/s11661-008-9758-0 [9] Xie S S, Lee J D, Yoon U S, et al. Compression test to reveal surface crack sensitivity between 700 and 1100.DEG. C. of Nb-bearing and high Ni continuous casting slabs. ISIJ Int, 2002, 42(7): 708 [10] Yan W, Shan Y Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels. Metall Mater Trans A, 2006, 37(7): 2147 doi: 10.1007/BF02586135 [11] Ma F J, Wen G H, Tang P, et al. Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab. Metall Mater Trans B, 2011, 42(1): 81 doi: 10.1007/s11663-010-9454-5 [12] Luo Y W, Guo H J, Guo J. Effect of cooling rate on the transformation characteristics and precipitation behaviour of carbides in AISI M42 high-speed steel. Ironmak Steelmak, 2019, 46(7): 698 doi: 10.1080/03019233.2018.1461593 [13] Ma F J, Wen G H, Wang W L. Effect of cooling rates on the second-phase precipitation and proeutectoid phase transformation of a Nb-Ti microalloyed steel slab. Steel Res Int, 2013, 84(4): 370 doi: 10.1002/srin.201200161 [14] Kato T, Ito Y, Kawamoto M, et al. Prevention of slab surface transverse cracking by microstructure control. ISIJ Int, 2003, 43(11): 1742 doi: 10.2355/isijinternational.43.1742 [15] Ma F J. Precipitation Behavior of the Second Phase and Microstructural Evolution of the Surface Layer of Micro-Alloyed Slabs in Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2010馬范軍. 微合金鋼鑄坯第二相析出行為及表層組織演變研究[學位論文]. 重慶: 重慶大學, 2010 [16] Li J Y, Wen G H, Tang P, et al. Analysis on corner transverse cracks of slabs with different section dimensions cast with Pangang slab casting machine. J Univ Sci Technol Beijing, 2011, 33(3): 296李菊艷, 文光華, 唐萍, 等. 攀鋼板坯連鑄機不同斷面鑄坯角部橫裂紋分析. 北京科技大學學報, 2011, 33(3):296 [17] Han Y S, Zhang J S, Zou L L, et al. Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet. Chin J Eng, 2020, 42(6): 739韓延申, 張江山, 鄒雷雷, 等. 噴嘴噴淋距離對連鑄小方坯二冷均勻性的影響. 工程科學學報, 2020, 42(6):739 [18] Tang P, Luo L Q, Wen G H, et al. Precipitation behaviors of secondary phases in micro-alloy steels during continuous casting simulated by CLSM. Chin J Eng, 2015, 37(9): 1130唐萍, 羅琳青, 文光華, 等. 基于激光共聚焦顯微鏡模擬微合金鋼連鑄過程中第二相的析出行為. 工程科學學報, 2015, 37(9):1130 [19] Griesser S, Bernhard C, Dippenaar R. Mechanism of the peritectic phase transition in Fe–C and Fe–Ni alloys under conditions close to chemical and thermal equilibrium. ISIJ Int, 2014, 54(2): 466 doi: 10.2355/isijinternational.54.466 [20] Slater C, Hechu K, Sridhar S. Characterisation of solidification using combined confocal scanning laser microscopy with infrared thermography. Mater Charact, 2017, 126: 144 doi: 10.1016/j.matchar.2017.02.025 [21] Yang L. Study on Surface Structure Characteristic and Control Mechanism of Continuous Casting Slabs of Micro-Alloyed Steels [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2019楊柳. 微合金化鋼連鑄板坯表面組織特征及其調控機制研究[學位論文]. 武漢: 武漢科技大學, 2019 [22] Han Y S, Yan W, Zhang J S, et al. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int, 2020, 60(1): 106 doi: 10.2355/isijinternational.ISIJINT-2019-409 [23] Han Y S. Study on Secondary Cooling Control of Continuous Casting Billet Based on Nozzle Spray Characteristic [Dissertation]. Beijing: University of Science and Technology Beijing, 2021韓延申. 基于噴嘴噴淋特性的連鑄方坯二次冷卻控制研究[學位論文]. 北京: 北京科技大學, 2021 [24] Ji C, Cai Z Z, Wang W L, et al. Effect of transverse distribution of secondary cooling water on corner cracks in wide thick slab continuous casting process. Ironmak Steelmak, 2014, 41(5): 360 doi: 10.1179/1743281213Y.0000000161 [25] Wang X Y, Liu Q, Hu Z G, et al. Influence of nozzle layouts on the secondary cooling effect of medium thickness slabs in continuous casting. J Univ Sci Technol Beijing, 2010, 32(8): 1064王先勇, 劉青, 胡志剛, 等. 噴嘴布置方式對中厚板坯連鑄二次冷卻效果的影響. 北京科技大學學報, 2010, 32(8):1064 -