<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于非調質鋼凝固特性的二次冷卻控制

鄒雷雷 劉青 杜肖臣 張江山 李明

鄒雷雷, 劉青, 杜肖臣, 張江山, 李明. 基于非調質鋼凝固特性的二次冷卻控制[J]. 工程科學學報, 2022, 44(3): 357-366. doi: 10.13374/j.issn2095-9389.2021.09.19.001
引用本文: 鄒雷雷, 劉青, 杜肖臣, 張江山, 李明. 基于非調質鋼凝固特性的二次冷卻控制[J]. 工程科學學報, 2022, 44(3): 357-366. doi: 10.13374/j.issn2095-9389.2021.09.19.001
ZOU Lei-lei, LIU Qing, DU Xiao-chen, ZHANG Jiang-shan, LI Ming. Secondary cooling control based on solidification characteristics of non-quenched and tempered steel[J]. Chinese Journal of Engineering, 2022, 44(3): 357-366. doi: 10.13374/j.issn2095-9389.2021.09.19.001
Citation: ZOU Lei-lei, LIU Qing, DU Xiao-chen, ZHANG Jiang-shan, LI Ming. Secondary cooling control based on solidification characteristics of non-quenched and tempered steel[J]. Chinese Journal of Engineering, 2022, 44(3): 357-366. doi: 10.13374/j.issn2095-9389.2021.09.19.001

基于非調質鋼凝固特性的二次冷卻控制

doi: 10.13374/j.issn2095-9389.2021.09.19.001
基金項目: 江蘇省雙創人才資助項目(2016A426);鋼鐵冶金新技術國家重點實驗室自主課題資助項目(41618004)
詳細信息
    通訊作者:

    E-mail: qliu@ustb.edu.cn

  • 中圖分類號: TF777.2

Secondary cooling control based on solidification characteristics of non-quenched and tempered steel

More Information
  • 摘要: 提出了基于非調質鋼凝固特性的二次冷卻控制方法。在凝固特性研究方面,運用高溫共聚焦顯微鏡、場發射掃描電鏡研究了冷速對第二相粒子析出規律的影響,并闡釋了先共析鐵素體的相變機制。結果表明,第二相粒子在1086 ℃開始析出,并在912 ℃達到峰值。當冷速在0.1~5 ℃·s?1時,隨著冷速增大,第二相粒子尺寸和數量均減小,且第二相粒子由晶界處的鏈狀分布向晶體內的彌散分布過渡,提高冷速有助于削弱第二相粒子的釘扎作用,強化鑄坯表層微觀組織;在二冷配水優化方面,建立了考慮鑄坯橫向水量分布的凝固傳熱數學模型,提出了基于非調質鋼凝固特性的二冷配水優化方案,即對出結晶器后的鑄坯實施強冷,以滿足控制第二相粒子析出的合理冷速和溫度區間的要求。工業試驗證實了技術方案的可行性。此外,研究表明,降低噴淋距離有助于改善連鑄坯橫向冷卻不均勻性。本研究統籌考慮二冷水量與噴淋距離對非調質鋼裂紋敏感性的影響,通過開展“縱?橫”凝固冷卻控制研究對連鑄二次冷卻進行系統優化,提出的二冷優化方案有助于改善連鑄坯的表面及皮下裂紋。

     

  • 圖  1  噴淋水量分布測試

    Figure  1.  Measurement of the water flux distribution of the nozzle

    圖  2  SG02鋼凝固進程的原位觀察。(a)1086 ℃;(b)912 ℃;(c)723 ℃;(d)665 ℃

    Figure  2.  In-situ observation of the solidification process of the SG02 steel: (a) 1086 ℃; (b) 912 ℃; (c) 723 ℃; (d) 665 ℃

    圖  3  碳氮化物析出的熱力學計算。(a)碳氮化物的質量分數;(b)碳氮化物的主要成分

    Figure  3.  Thermodynamic calculation of carbonitride precipitation: (a) mass fraction of carbonitrides; (b) main component of a carbonitride

    圖  4  不同冷速下碳氮化物粒子的析出形貌。(a)0.1 ℃·s?1;(b)0.5 ℃·s?1;(c)1 ℃·s?1;(d)3 ℃·s?1;(e)5 ℃·s?1;(f)能量衍射分析

    Figure  4.  Precipitation morphology of carbonitride particles at different cooling rates: (a) 0.1 ℃·s?1; (b) 0.5 ℃·s?1; (c) 1 ℃·s?1; (d) 3 ℃·s?1; (e) 5 ℃·s?1; (f) energy-dispersive spectrum analysis

    圖  5  連鑄機及噴嘴配置

    Figure  5.  Continuous casting machine and nozzle configuration

    圖  6  SG02鋼熱物性參數。(a)固相率;(b)密度和熱焓;(c)熱導率

    Figure  6.  Thermal-physical properties of SG02 steel: (a) solid fraction; (b) density and enthalpy; (c) thermal conductivity

    圖  7  模型修正及計算結果。(a)鑄坯表面中心測量值與計算值對比;(b)表面中心和角部溫度變化

    Figure  7.  Model modification and calculation results: (a) comparisons of the measured and simulated temperatures of the bloom surface center; (b) surface center and corner temperature changes

    圖  8  連鑄坯表面中心瞬時冷速

    Figure  8.  Instantaneous cooling rate at the surface center of the continuous casting billet

    圖  9  SG02鋼高溫熱塑性

    Figure  9.  Hot ductility of the SG02 steel

    圖  10  二冷配水優化后連鑄坯特征位置溫度變化

    Figure  10.  Temperature change of characteristic position after secondary cooling water distribution optimization

    圖  11  噴淋水的不同覆蓋類型

    Figure  11.  Different coverage types of the spray water

    圖  12  噴淋高度優化前、后水量分布。(a)二冷一段,噴嘴A;(b)二冷二段,噴嘴B;(c)二冷三段,噴嘴C;(d)二冷四段,噴嘴D

    Figure  12.  Water distribution before and after spray height optimization: (a) SegmentⅠ, Nozzle A; (b) Segment Ⅱ, Nozzle B; (c) Segment Ⅲ, Nozzle C; (d) Segment Ⅳ, Nozzle D

    圖  13  噴嘴配置優化后連鑄坯特征位置溫度變化

    Figure  13.  Temperature change of characteristic position after nozzle configuration optimization

    表  1  SG02鋼主要化學成分(質量分數)

    Table  1.   Main chemical composition of the SG02 steel %

    CSiMnPSNVNbTi
    0.430.451.410.010.01250.01150.070.0170.015
    下載: 導出CSV

    表  2  SG02鋼主要連鑄工藝參數

    Table  2.   Main casting parameters of the SG02 steel

    ItemValue
    Sectional dimension/(mm×mm)220×220
    Casting speed/(m·min?1)1.05
    Pouring temperature/°C1524
    Superheat/℃35
    Water flux of mold cooling/(m3·h?1)150
    Temperature difference of mold water/°C7.0
    Water flux of secondary cooling / (L·kg?1)0.32
    Water temperature/℃35
    Ambient temperature/℃25
    下載: 導出CSV

    表  3  噴淋高度優化方案

    Table  3.   Spray height optimization scheme mm

    SchemesNozzle ANozzle BNozzle CNozzle D
    Before optimization165
    (ModeⅠ)
    178
    (ModeⅠ)
    170
    (ModeⅡ)
    175
    (ModeⅠ)
    After optimization140
    (ModeⅡ)
    145
    (Mode Ⅲ)
    140
    (Mode Ⅲ)
    135
    (Mode Ⅲ)
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Yang Y, Zhou L Y, Jiang P, et al. Influence of die-forging deformation on microstructure of 1538MV non-quenched and tempered steel for crankshaft. Chin J Eng, 2018, 40(5): 579

    楊勇, 周樂育, 蔣鵬, 等. 模鍛變形對曲軸用非調質鋼1538MV顯微組織的影響. 工程科學學報, 2018, 40(5):579
    [2] Lu J L, Wang Y P, Wang Q M, et al. Effect of MnS inclusions distribution on intragranular ferrite formation in medium carbon non-quenched and tempered steel for large-sized crankshaft. ISIJ Int, 2019, 59(3): 524 doi: 10.2355/isijinternational.ISIJINT-2018-509
    [3] Liu Z Y, Wang C J, Cai Z Z, et al. New secondary cooling process for transverse corner crack control of Nb micro-alloyed steel slab. China Metall, 2018, 28(3): 22

    劉志遠, 王重君, 蔡兆鎮, 等. 含鈮微合金鋼連鑄坯角部裂紋控制二冷新工藝. 中國冶金, 2018, 28(3):22
    [4] Suzuki K I, Miyagawa S, Saito Y, et al. Effect of microalloyed nitride forming elements on precipitation of carbonitride and high temperature ductility of continuously cast low carbon Nb containing steel slab. ISIJ Int, 1995, 35(1): 34 doi: 10.2355/isijinternational.35.34
    [5] Du C, Zhang J, Wen J, et al. Hot ductility trough elimination through single cycle of intense cooling and reheating for microalloyed steel casting. Ironmak Steelmak, 2016, 43(5): 331 doi: 10.1179/1743281215Y.0000000044
    [6] Baker T N. Microalloyed steels. Ironmak Steelmak, 2016, 43(4): 264 doi: 10.1179/1743281215Y.0000000063
    [7] Dou K, Liu Q. A new cooling strategy in curved continuous casting process of vanadium micro-alloyed YQ450NQR1 steel bloom combining experimental and modeling approach. Metall Mater Trans A, 2020, 51(8): 3945 doi: 10.1007/s11661-020-05819-9
    [8] Park J S, Ha Y S, Lee S J, et al. Dissolution and precipitation kinetics of Nb(C, N) in austenite of a low-carbon Nb-microalloyed steel. Metall Mater Trans A, 2009, 40(3): 560 doi: 10.1007/s11661-008-9758-0
    [9] Xie S S, Lee J D, Yoon U S, et al. Compression test to reveal surface crack sensitivity between 700 and 1100.DEG. C. of Nb-bearing and high Ni continuous casting slabs. ISIJ Int, 2002, 42(7): 708
    [10] Yan W, Shan Y Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels. Metall Mater Trans A, 2006, 37(7): 2147 doi: 10.1007/BF02586135
    [11] Ma F J, Wen G H, Tang P, et al. Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab. Metall Mater Trans B, 2011, 42(1): 81 doi: 10.1007/s11663-010-9454-5
    [12] Luo Y W, Guo H J, Guo J. Effect of cooling rate on the transformation characteristics and precipitation behaviour of carbides in AISI M42 high-speed steel. Ironmak Steelmak, 2019, 46(7): 698 doi: 10.1080/03019233.2018.1461593
    [13] Ma F J, Wen G H, Wang W L. Effect of cooling rates on the second-phase precipitation and proeutectoid phase transformation of a Nb-Ti microalloyed steel slab. Steel Res Int, 2013, 84(4): 370 doi: 10.1002/srin.201200161
    [14] Kato T, Ito Y, Kawamoto M, et al. Prevention of slab surface transverse cracking by microstructure control. ISIJ Int, 2003, 43(11): 1742 doi: 10.2355/isijinternational.43.1742
    [15] Ma F J. Precipitation Behavior of the Second Phase and Microstructural Evolution of the Surface Layer of Micro-Alloyed Slabs in Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2010

    馬范軍. 微合金鋼鑄坯第二相析出行為及表層組織演變研究[學位論文]. 重慶: 重慶大學, 2010
    [16] Li J Y, Wen G H, Tang P, et al. Analysis on corner transverse cracks of slabs with different section dimensions cast with Pangang slab casting machine. J Univ Sci Technol Beijing, 2011, 33(3): 296

    李菊艷, 文光華, 唐萍, 等. 攀鋼板坯連鑄機不同斷面鑄坯角部橫裂紋分析. 北京科技大學學報, 2011, 33(3):296
    [17] Han Y S, Zhang J S, Zou L L, et al. Effect of nozzle spray distance on the secondary cooling uniformity of continuous casting billet. Chin J Eng, 2020, 42(6): 739

    韓延申, 張江山, 鄒雷雷, 等. 噴嘴噴淋距離對連鑄小方坯二冷均勻性的影響. 工程科學學報, 2020, 42(6):739
    [18] Tang P, Luo L Q, Wen G H, et al. Precipitation behaviors of secondary phases in micro-alloy steels during continuous casting simulated by CLSM. Chin J Eng, 2015, 37(9): 1130

    唐萍, 羅琳青, 文光華, 等. 基于激光共聚焦顯微鏡模擬微合金鋼連鑄過程中第二相的析出行為. 工程科學學報, 2015, 37(9):1130
    [19] Griesser S, Bernhard C, Dippenaar R. Mechanism of the peritectic phase transition in Fe–C and Fe–Ni alloys under conditions close to chemical and thermal equilibrium. ISIJ Int, 2014, 54(2): 466 doi: 10.2355/isijinternational.54.466
    [20] Slater C, Hechu K, Sridhar S. Characterisation of solidification using combined confocal scanning laser microscopy with infrared thermography. Mater Charact, 2017, 126: 144 doi: 10.1016/j.matchar.2017.02.025
    [21] Yang L. Study on Surface Structure Characteristic and Control Mechanism of Continuous Casting Slabs of Micro-Alloyed Steels [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2019

    楊柳. 微合金化鋼連鑄板坯表面組織特征及其調控機制研究[學位論文]. 武漢: 武漢科技大學, 2019
    [22] Han Y S, Yan W, Zhang J S, et al. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int, 2020, 60(1): 106 doi: 10.2355/isijinternational.ISIJINT-2019-409
    [23] Han Y S. Study on Secondary Cooling Control of Continuous Casting Billet Based on Nozzle Spray Characteristic [Dissertation]. Beijing: University of Science and Technology Beijing, 2021

    韓延申. 基于噴嘴噴淋特性的連鑄方坯二次冷卻控制研究[學位論文]. 北京: 北京科技大學, 2021
    [24] Ji C, Cai Z Z, Wang W L, et al. Effect of transverse distribution of secondary cooling water on corner cracks in wide thick slab continuous casting process. Ironmak Steelmak, 2014, 41(5): 360 doi: 10.1179/1743281213Y.0000000161
    [25] Wang X Y, Liu Q, Hu Z G, et al. Influence of nozzle layouts on the secondary cooling effect of medium thickness slabs in continuous casting. J Univ Sci Technol Beijing, 2010, 32(8): 1064

    王先勇, 劉青, 胡志剛, 等. 噴嘴布置方式對中厚板坯連鑄二次冷卻效果的影響. 北京科技大學學報, 2010, 32(8):1064
  • 加載中
圖(13) / 表(3)
計量
  • 文章訪問數:  573
  • HTML全文瀏覽量:  324
  • PDF下載量:  89
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-19
  • 網絡出版日期:  2021-10-22
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回