<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

赤蘚糖醇/碳納米管復合相變材料熱特性模擬研究

閆曉鑫 馮妍卉 邱琳 張欣欣

閆曉鑫, 馮妍卉, 邱琳, 張欣欣. 赤蘚糖醇/碳納米管復合相變材料熱特性模擬研究[J]. 工程科學學報, 2022, 44(4): 722-729. doi: 10.13374/j.issn2095-9389.2021.09.14.002
引用本文: 閆曉鑫, 馮妍卉, 邱琳, 張欣欣. 赤蘚糖醇/碳納米管復合相變材料熱特性模擬研究[J]. 工程科學學報, 2022, 44(4): 722-729. doi: 10.13374/j.issn2095-9389.2021.09.14.002
YAN Xiao-xin, FENG Yan-hui, QIU Lin, ZHANG Xin-xin. Simulation of thermal properties of erythritol/carbon nanotube composite phase change materials[J]. Chinese Journal of Engineering, 2022, 44(4): 722-729. doi: 10.13374/j.issn2095-9389.2021.09.14.002
Citation: YAN Xiao-xin, FENG Yan-hui, QIU Lin, ZHANG Xin-xin. Simulation of thermal properties of erythritol/carbon nanotube composite phase change materials[J]. Chinese Journal of Engineering, 2022, 44(4): 722-729. doi: 10.13374/j.issn2095-9389.2021.09.14.002

赤蘚糖醇/碳納米管復合相變材料熱特性模擬研究

doi: 10.13374/j.issn2095-9389.2021.09.14.002
基金項目: 國家重點研發計劃資助項目(2018YFA0702300);國家自然科學基金資助項目(51876007,51876008);北京市科技新星計劃資助項目(Z201100006820065);北京市自然科學基金資助項目(3202020);北京科技大學青年教師學科交叉研究資助項目(中央高校基本科研業務費專項資金)(FRF-IDRY-19-004)
詳細信息
    通訊作者:

    馮妍卉,E-mail: yhfeng@me.ustb.edu.cn

    邱琳,E-mail: qiulin@ustb.edu.cn

  • 中圖分類號: TK02

Simulation of thermal properties of erythritol/carbon nanotube composite phase change materials

More Information
  • 摘要: 在“碳達峰、碳中和”的大背景下,能源結構從一次能源向新能源轉變刻不容緩。由于新能源具有間歇性、波動性的特點,儲能技術可以有效解決上述問題而得到了廣泛的關注。相變材料作為儲能技術的關鍵,其熱導率低的問題亟需解決。赤蘚糖醇作為中低溫區常用的高焓值相變材料,熱導率僅為0.7 W?m–1?K–1,嚴重制約了實際應用中的能量利用效率。本文以赤蘚糖醇作為主要研究對象,采用具有超高導熱系數的單壁碳納米管作為導熱增強材料,借助分子動力學模擬的方法探究了碳納米管長度、質量分數以及分布方式對赤蘚糖醇/碳納米管復合相變材料熱導率的影響規律。當碳納米管軸向長度小于其聲子平均自由程時,復合相變材料熱導率隨碳納米管軸向長度增加而增大,同時隨碳納米管質量分數增加而增大,但表現出顯著的各向異性。由于引入赤蘚糖醇–碳納米管界面,復合相變材料徑向熱導率相比純赤蘚糖醇反而降低。當碳納米管在赤蘚糖醇中隨機分布時,熱導率的各向異性得到了顯著改善且各方向熱導率均得到了提升。通過對比復合前后赤蘚糖醇與碳納米管的聲子振動態密度發現,由于兩者間的相互作用,碳納米管的聲子振動受到抑制,而赤蘚糖醇中聲子熱輸運得到激發,從而提高了熱導率。

     

  • 圖  1  赤蘚糖醇/碳納米管復合結構模型圖。(a)赤蘚糖醇單晶胞結構;(b)碳納米管質量分數分別為8.88%和13.35%的赤蘚糖醇/碳納米管復合結構模型

    Figure  1.  Erythritol/carbon nanotube composite structure model: (a) erythritol single cell structure; (b) erythritol/carbon nanotube composite structure model with a carbon nanotube mass fraction of 8.88% and 13.35%

    圖  2  NEMD方法計算熱導率示意圖

    Figure  2.  Schematic model of the NEMD method for thermal conductivity calculation

    圖  3  293 K溫度下赤蘚糖醇密度隨馳豫時間變化

    Figure  3.  Density of erythritol changes with a relaxation time at 293 K

    圖  4  NEMD方法熱流與溫度分布圖。(a)體系施加/提取的能量(斜率為熱流);(b)體系溫度分布圖

    Figure  4.  Heat flow and temperature distribution diagram of the NEMD method: (a) energy added/subtracted by the system (the slope is heat flux); (b) temperature distribution of the system

    圖  5  赤蘚糖醇/碳納米管復合材料熱導率隨碳納米管長度變化

    Figure  5.  Thermal conductivity of erythritol/CNT composites as a function of the length of CNT

    圖  6  (a)赤蘚糖醇/碳納米管復合材料熱導率隨碳納米管質量分數變化;(b)赤蘚糖醇與碳納米管間相互作用能隨碳納米管質量分數變化

    Figure  6.  (a) Thermal conductivity of erythritol/CNT composites as a function of the mass fraction of CNT; (b) interaction energy between erythritol and CNT varies with the mass fraction of CNT

    圖  7  赤蘚糖醇/碳納米管隨機填充復合模型。(a)赤蘚糖醇/碳納米管(3根)復合材料隨機模型;(b)赤蘚糖醇/碳納米管(5根)復合材料隨機模型;(c)赤蘚糖醇/碳納米管(6根)復合材料隨機模型

    Figure  7.  Random filling model of erythritol/CNTs: (a) random filling model of erythritol/3 CNTs composites; (b) random filling model of erythritol/5 CNTs composites; (c) random filling model of erythritol/6 CNTs composites

    圖  8  赤蘚糖醇/碳納米管復合材料聲子振動態密度。(a)碳納米管復合前后聲子振動態密度;(b)赤蘚糖醇復合前后聲子振動態密度

    Figure  8.  VDOS of erythritol/CNT composite: (a) VDOS of CNTs before and after compound; (b) VDOS of erythritol before and after compound

    表  1  赤蘚糖醇與碳納米管不同種類原子間L-J勢參數

    Table  1.   L-J potential parameters between erythritol and different kinds of carbon nanotubes

    Atom typeεij / eVσij / nm
    C2-Cp0.00280.3000
    C1-Cp0.00280.3000
    Oh-Cp0.00330.3620
    ho-Cp0.00210.3025
    h-Cp0.00000.0000
    下載: 導出CSV

    表  2  隨機分布方式下赤蘚糖醇/碳納米管復合材料熱導率

    Table  2.   Thermal conductivity of erythritol/CNTs composites with random distribution

    Number of CNTskx / (W?m–1?K–1)ky / (W?m–1?K–1)kz / (W?m–1?K–1)kmean / (W?m–1?K–1)Enhancement ratio / %
    3 (mass fraction of 16.00%)1.61±0.031.61±0.071.29±0.031.50±0.01123.88
    5 (mass fraction of 25.28%)2.28±0.011.61±0.011.92±0.061.94±0.02189.56
    6 (mass fraction of 30.33%)2.27±0.112.33±0.101.87±0.082.16±0.06222.39
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56 doi: 10.1038/354056a0
    [2] Qiu L, Zhu N, Feng Y H, et al. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys Rep, 2020, 843: 1 doi: 10.1016/j.physrep.2019.12.001
    [3] Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of single-walled carbon nanotubes. Phys Rev B, 1999, 59(4): R2514 doi: 10.1103/PhysRevB.59.R2514
    [4] Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett, 2000, 84(20): 4613 doi: 10.1103/PhysRevLett.84.4613
    [5] Xu C, Xu S L, Eticha R D. Experimental investigation of thermal performance for pulsating flow in a microchannel heat sink filled with PCM (paraffin/CNT composite). Energy Convers Manag, 2021, 236: 114071 doi: 10.1016/j.enconman.2021.114071
    [6] Al-Ahmed A, Sar? A, Mazumder M A J, et al. Thermal energy storage and thermal conductivity properties of fatty acid/fatty acid-grafted-CNTs and fatty acid/CNTs as novel composite phase change materials. Sci Rep, 2020, 10: 15388 doi: 10.1038/s41598-020-71891-1
    [7] Cong R S, Xu C L, Chen Y K, et al. Enhanced thermal conductivity of palmitic acid/copper foam composites with carbon nanotube as thermal energy storage materials. J Energy Storage, 2021, 40: 102783 doi: 10.1016/j.est.2021.102783
    [8] Rabady R I, Malkawi D S. Thermal conductivity enhancement of sodium thiosulfate pentahydrate by adding carbon nano-tubes/graphite nano-particles. J Energy Storage, 2020, 27: 101166 doi: 10.1016/j.est.2019.101166
    [9] Li A, Hai G T, Cheng P, et al. Molecular insights into the interaction mechanism between C18 phase change materials and methyl-modified carbon nanotubes. Ceram Int, 2021, 47(16): 23564 doi: 10.1016/j.ceramint.2021.05.074
    [10] Tafrishi H, Sadeghzadeh S, Ahmadi R, et al. Investigation of tetracosane thermal transport in presence of graphene and carbon nanotube fillers—A molecular dynamics study. J Energy Storage, 2020, 29: 101321 doi: 10.1016/j.est.2020.101321
    [11] Yu Y S, Zhao C Y, Tao Y B, et al. Superior thermal energy storage performance of NaCl–SWCNT composite phase change materials: A molecular dynamics approach. Appl Energy, 2021, 290: 116799 doi: 10.1016/j.apenergy.2021.116799
    [12] Du Y P, Zhou T, Zhao C Y, et al. Molecular dynamics simulation on thermal enhancement for carbon nano tubes (CNTs) based phase change materials (PCMs). Int J Heat Mass Transf, 2022, 182: 122017 doi: 10.1016/j.ijheatmasstransfer.2021.122017
    [13] Zhang H C, Rindt C C M, Smeulders D M J, et al. Nanoscale heat transfer in carbon nanotubes - sugar alcohol composite as heat storage materials. J Phys Chem C, 2016, 120(38): 21915 doi: 10.1021/acs.jpcc.6b05466
    [14] Zou H Y, Feng Y H, Qiu L, et al. Effect of the loading amount and arrangement of iodine chains on the interfacial thermal transport of carbon nanotubes: A molecular dynamics study. RSC Adv, 2020, 10(72): 44196 doi: 10.1039/D0RA06870E
    [15] Ikeshoji T, Hafskjold B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface. Mol Phys, 1994, 81(2): 251 doi: 10.1080/00268979400100171
    [16] Jund P, Jullien R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys Rev B, 1999, 59(21): 13707 doi: 10.1103/PhysRevB.59.13707
    [17] Müller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys, 1997, 106(14): 6082 doi: 10.1063/1.473271
    [18] Zhang Q, Luo Z L, Guo Q L, et al. Preparation and thermal properties of short carbon fibers/erythritol phase change materials. Energy Convers Manag, 2017, 136: 220 doi: 10.1016/j.enconman.2017.01.023
    [19] Shimada A. Crystal and molecular structure of mesoerythritol. Acta Cryst, 1958, 11(10): 748 doi: 10.1107/S0365110X58002036
    [20] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1 doi: 10.1006/jcph.1995.1039
    [21] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling Simul Mater Sci Eng, 2010, 18(1): 015012 doi: 10.1088/0965-0393/18/1/015012
    [22] Schmid N, Eichenberger A P, Choutko A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J, 2011, 40(7): 843 doi: 10.1007/s00249-011-0700-9
    [23] Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B, 1988, 37(12): 6991 doi: 10.1103/PhysRevB.37.6991
    [24] Qiu L, Zhu N, Feng Y H, et al. Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. Int J Heat Mass Transf, 2020, 152: 119565 doi: 10.1016/j.ijheatmasstransfer.2020.119565
    [25] Hu Y, Feng T L, Gu X K, et al. Unification of nonequilibrium molecular dynamics and the mode-resolved phonon Boltzmann equation for thermal transport simulations. Phys Rev B, 2020, 101(15): 155308 doi: 10.1103/PhysRevB.101.155308
    [26] Li Z, Xiong S Y, Sievers C, et al. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. J Chem Phys, 2019, 151(23): 234105 doi: 10.1063/1.5132543
    [27] Feng B, Fan L W, Zeng Y, et al. Atomistic insights into the effects of hydrogen bonds on the melting process and heat conduction of erythritol as a promising latent heat storage material. Int J Therm Sci, 2019, 146: 106103 doi: 10.1016/j.ijthermalsci.2019.106103
    [28] Yan X X, Feng Y H, Qiu L, et al. Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials. Energy, 2021, 233: 121158 doi: 10.1016/j.energy.2021.121158
    [29] H?hlein S, K?nig-Haagen A, Brüggemann D. Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES). Materials, 2017, 10(4): 444 doi: 10.3390/ma10040444
    [30] Chai Y, Xiao Z Y, Chan P C H. Horizontally aligned carbon nanotube bundles for interconnect application: Diameter-dependent contact resistance and mean free path. Nanotechnology, 2010, 21(23): 235705 doi: 10.1088/0957-4484/21/23/235705
    [31] Yu C, Shi L, Yao Z, et al. Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett, 2005, 5(9): 1842 doi: 10.1021/nl051044e
    [32] S??skilahti K, Oksanen J, Volz S, et al. Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys Rev B, 2015, 91(11): 115426 doi: 10.1103/PhysRevB.91.115426
    [33] Wang J, Li C, Li J, et al. A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites. Carbon, 2021, 175: 259 doi: 10.1016/j.carbon.2020.12.086
    [34] Bae M H, Li Z Y, Aksamija Z, et al. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat Commun, 2013, 4: 1734 doi: 10.1038/ncomms2755
    [35] Qiu L, Zhang X H, Guo Z X, et al. Interfacial heat transport in nano-carbon assemblies. Carbon, 2021, 178: 391 doi: 10.1016/j.carbon.2021.02.105
    [36] Feng D L, Feng Y H, Liu Y Z, et al. Thermal conductivity of a 2D covalent organic framework and its enhancement using fullerene 3D self-assembly: A molecular dynamics simulation. J Phys Chem C, 2020, 124(15): 8386 doi: 10.1021/acs.jpcc.0c00448
    [37] Yousefi F, Khoeini F, Rajabpour A. Thermal conductivity and thermal rectification of nanoporous graphene: A molecular dynamics simulation. Int J Heat Mass Transf, 2020, 146: 118884 doi: 10.1016/j.ijheatmasstransfer.2019.118884
    [38] Yu Z P, Feng Y H, Feng D L, et al. Thermal conductance bottleneck of a three dimensional graphene–CNT hybrid structure: A molecular dynamics simulation. Phys Chem Chem Phys, 2019, 22(1): 337
    [39] Zhao C Y, Tao Y B, Yu Y S. Molecular dynamics simulation of thermal and phonon transport characteristics of nanocomposite phase change material. J Mol Liq, 2021, 329: 115448 doi: 10.1016/j.molliq.2021.115448
    [40] Dickey J M, Paskin A. Computer simulation of the lattice dynamics of solids. Phys Rev, 1969, 188(3): 1407 doi: 10.1103/PhysRev.188.1407
  • 加載中
圖(8) / 表(2)
計量
  • 文章訪問數:  4228
  • HTML全文瀏覽量:  380
  • PDF下載量:  70
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-14
  • 網絡出版日期:  2021-12-02
  • 刊出日期:  2022-04-02

目錄

    /

    返回文章
    返回