Hydrometallurgy leaching of manganese from electrolytic manganese anode slime using hydrogen peroxide as reducing agent
-
摘要: 電解錳陽極泥是生產電解金屬錳時陽極產生的副產物,其中含有大量錳、鉛等資源。如何高效浸出電解錳陽極泥中的錳是實現其資源化利用的關鍵,本研究提出了一種H2SO4?H2O2浸出體系強化電解錳陽極泥中錳浸出的新方法,研究了H2O2和H2SO4用量、反應溫度、反應時間以及固液比對電解錳陽極泥中錳浸出率的影響。研究結果表明,在陽極泥與H2O2質量比1∶0.8、陽極泥與H2SO4質量比1∶0.9、反應溫度45 ℃、固液質量比1∶10條件下浸出反應15 min,錳的浸出率可達97.23%,浸出渣中Pb的質量分數高達53.71%。浸出機理分析表明,酸性條件下電解錳陽極泥中錳氧化物被H2O2還原浸出,浸出液中Mn主要以MnSO4存在,浸出渣中Pb主要以PbSO4富集。本研究結果為電解錳陽極泥的資源化利用提供了一種新思路。Abstract: Manganese is one of the important strategic resources in China, and there is a saying that “no manganese, no steel”. In 2020, China’s output of electrolytic metal manganese was 1501300 tons, accounting for 96.5% of the global output. At present, manganese metal is mainly obtained using the electrodeposition process. Electrolytic manganese anode slime (EMAS) is a kind of solid waste generated during the production of electrolytic metal manganese, which contains a significant amount of manganese, lead, and other resources. Every year, 60000?180000 tons of EMAS will be discharged in China, and direct discharge will cause severe environmental pollution. Cleaning and efficiently leaching Mn from EMAS is the key to realizing its resource utilization. A large number of studies have achieved efficient leaching of manganese from EMAS. Still, there are a number of issues, such as complicated processes, high leaching cost, a large amount of reducing agent, and residual organic matter in the leaching solution. Therefore, it is urgent to find a new method for efficient clean leaching of manganese from EMAS. This study proposed a new method of enhancing manganese leaching from EMAS with an H2SO4–H2O2 leaching system. The effects of the dosage of H2SO4 and H2O2, reaction temperature, reaction time, and solid–liquid ratio on the leaching efficiency of manganese from EMAS were studied. The results show that the leaching efficiency of manganese was 97.23%, and the content of Pb in the leaching residue was 53.71%, when the mass ratio of EMAS to H2O2 was 1∶0.8, the mass ratio of EMAS to H2SO4 was 1∶0.9, the leaching temperature was 45 ℃, the solid–liquid mass ratio was 1∶10 and the leaching time was 15 min. Leaching mechanism analysis showed that manganese oxide leaching in EMAS was reduced by H2O2 under acidic conditions, and Mn mainly exists in the leaching solution as MnSO4, as well as Pb in leaching residue is mainly enriched with PbSO4. This study offers a new idea for resource utilization of EMAS.
-
Key words:
- electrolytic manganese anode slime /
- leaching efficiency /
- H2O2 /
- Pb /
- leaching mechanism
-
圖 1 電解錳陽極泥與H2O2質量比對錳浸出率的影響
(固液比1∶10,電解錳陽極泥與H2SO4質量比1∶0.9,浸出溫度45 ℃,浸出時間60 min)
Figure 1. Effect of the mass ratio of electrolytic manganese anode slime (EMAS) to H2O2 on the manganese leaching efficiency in EMAS
(The solid–liquid mass ratio was 1∶10, the mass ratio of EMAS and H2SO4 was 1∶0.9, the leaching temperature was 45 ℃, and the leaching time was 60 min)
圖 2 電解錳陽極泥與H2SO4質量比對陽極泥中錳浸出率的影響
(固液比1∶10,電解錳陽極泥與H2O2質量為1∶0.8,浸出溫度45 ℃,浸出時間60 min)
Figure 2. Effect of the mass ratio of electrolytic manganese anode slime (EMAS) to H2SO4 on the manganese leaching efficiency in EMAS
(The solid–liquid mass ratio was 1∶10, the mass ratio of EMAS to H2O2 was 1∶0.8, the leaching temperature was 45 ℃, and the leaching time was 60 min)
圖 3 反應溫度對陽極泥中錳浸出率的影響
(固液比1∶10,電解錳陽極泥與H2SO4質量比1∶0.9,電解錳陽極泥與H2O2質量比1∶0.8,浸出時間60 min)
Figure 3. Effect of reaction temperature on the manganese leaching efficiency in electrolytic manganese anode slime (EMAS)
(The solid–liquid mass ratio was 1∶10, the mass ratio of EMAS to H2SO4 was 1∶0.9, the mass ratio of EMAS to H2O2 was 1∶0.8, and the leaching time was 60 min)
圖 4 固液比對陽極泥中錳浸出率的影響
(電解錳陽極泥與H2SO4質量1∶0.9,電解錳陽極泥與H2O2質量比1∶0.8,浸出溫度45 ℃,浸出時間60 min)
Figure 4. Effect of solid–liquid mass ratio on the manganese leaching efficiency in electrolytic manganese anode slime (EMAS)
(The mass ratio of EMAS to H2SO4 was 1∶0.9, the mass ratio of EMAS to H2O2 was 1∶0.8, the leaching temperature was 45 ℃, and the leaching time was 60 min)
圖 5 反應時間對陽極泥中錳浸出率的影響
(固液比1∶10,電解錳陽極泥與H2SO4質量比1∶0.9,電解錳陽極泥與H2O2質量比1∶0.8,浸出溫度45 ℃)
Figure 5. Effect of reaction time on manganese leaching efficiency in electrolytic manganese anode slime (EMAS)
(The solid–liquid mass ratio was 1∶10, the mass ratio of EMAS to H2SO4 was 1∶0.9, the mass ratio of EMAS to H2O2 was 1∶0.8, and the leaching temperature was 45 ℃)
表 1 電解錳陽極泥化學成分分析(質量分數)
Table 1. Chemical composition analysis of electrolytic manganese anode slime
% Category of EMAS MnO PbO Fe2O3 SnO2 CaO SeO2 Other Raw EMAS 76.54 5.71 0.07 0.06 2.01 0.27 15.34 Leaching EMAS# 1.90 57.85 6.14 1.48 0.43 0.53 31.67 Note: # When the mass ratio of electrolytic manganese anode slime (EMAS) to H2O2 was 1∶0.8, the mass ratio of EMAS to H2SO4 was 1∶0.9, the leaching temperature was 45 ℃, the solid–liquid mass ratio was 1∶10, and the leaching time was 15 min. www.77susu.com -
參考文獻
[1] Wei H K, Yang Y, Luo D, et al. A research on comprehensive recycling of electrolytic manganese anode slime. China’s Manganese Ind, 2017, 35(Suppl 1): 55魏漢可, 楊勇, 羅豆, 等. 電解金屬錳陽極泥的綜合回收利用研究. 中國錳業, 2017, 35(增刊1): 55 [2] Tan L Q, Yang J. Operation analysis of electrolytic manganese innovation alliance from june to august 2021. China Manganese Ind, 2021, 39(4): 69譚立群, 楊娟. 2021年6~8月電解金屬錳創新聯盟運行分析. 中國錳業, 2021, 39(4):69 [3] Huang L Q, Bi Y F, Mu L L, et al. The process and mechanism of electrolytic manganese anode slime lead removal. Adv Mater Res, 2014, 878: 163 doi: 10.4028/www.scientific.net/AMR.878.163 [4] Huang L Y, Long H Y, Su H F. Reduction of selenium in electrolytic manganese anodic solution using ammonium sulfite. Hydrometall China, 2021, 40(2): 125黃麗燕, 龍湖燕, 粟海鋒. 用亞硫酸銨從電解錳陽極液中還原回收硒. 濕法冶金, 2021, 40(2):125 [5] Li D H. Study on the Utilization of Electrolytic Manganese Anode Slime [Dissertation]. Chongqing: Chongqing University, 2011李東海. 電解錳陽極泥的利用研究[學位論文]. 重慶: 重慶大學, 2011 [6] Wu Y, Shen H T. Comprehensive recycling of manganese anode slime with modified reductant. Min Metall Eng, 2016, 36(5): 69 doi: 10.3969/j.issn.0253-6099.2016.05.018吳焱, 沈慧庭. 改性無機還原劑還原浸出電解錳陽極泥綜合回收錳鉛研究. 礦冶工程, 2016, 36(5):69 doi: 10.3969/j.issn.0253-6099.2016.05.018 [7] Fu L, Man R L, Fu Q, et al. Preparation of lithium manganate from electrolytic manganese anode slime. Guangdong Chem Ind, 2018, 45(8): 13 doi: 10.3969/j.issn.1007-1865.2018.08.007符磊, 滿瑞林, 扶強, 等. 電解錳陽極泥制備錳酸鋰. 廣東化工, 2018, 45(8):13 doi: 10.3969/j.issn.1007-1865.2018.08.007 [8] Wang B J, Mu L L, Guo S, et al. Lead leaching mechanism and kinetics in electrolytic manganese anode slime. Hydrometallurgy, 2019, 183: 98 doi: 10.1016/j.hydromet.2018.11.015 [9] Gong Q K. Experimental study on removal of impurity by electrolytic manganese anode sludge instead of hydrogen peroxide. Xinjiang Nonferrous Met, 2019, 42(4): 51 doi: 10.16206/j.cnki.65-1136/tg.2019.04.023宮清顆. 電解錳陽極泥代替雙氧水除雜試驗研究. 新疆有色金屬, 2019, 42(4):51 doi: 10.16206/j.cnki.65-1136/tg.2019.04.023 [10] Xie H M, Li S W, Guo Z H, et al. Extraction of lead from electrolytic manganese anode mud by microwave coupled ultrasound technology. J Hazard Mater, 2021, 407: 124622 doi: 10.1016/j.jhazmat.2020.124622 [11] Shang W, Wang X F, Wen Y Q, et al. Preparation of battery material manganese dioxide using electrolytic manganese anode mud. Hydrometall China, 2015, 34(2): 123 doi: 10.13355/j.cnki.sfyj.2015.02.11尚偉, 王旭峰, 溫玉清, 等. 用錳電解陽極泥制備電池材料二氧化錳. 濕法冶金, 2015, 34(2):123 doi: 10.13355/j.cnki.sfyj.2015.02.11 [12] Yang H. Using Electrolytic Manganese Anode Slime Preparation of Precursor Synthesize the Manganese Lithium Battery Material [Dissertation]. Wuhan: Wuhan Institute of Technology, 2016楊歡. 利用電解錳陽極泥制備的前驅體合成錳基鋰電池材料[學位論文]. 武漢: 武漢工程大學, 2016 [13] Huang L Q. Research on Preparation of Manganate Cathode Materials for Lithium Batteries with Electrolytic Manganese Anode Slime [Dissertation]. Wuhan: Wuhan Institute of Technology, 2014黃良取. 電解錳陽極泥制備錳酸鋰電池正極材料的工藝研究[學位論文]. 武漢: 武漢工程大學, 2014 [14] Liu L, Zhang H B, Guo S, et al. Heat treatment of electrolytic manganese anode slime and leaching of lead ions. Saf Environ Eng, 2016, 23(2): 50 doi: 10.13578/j.cnki.issn.1671-1556.2016.02.010劉璐, 張宏波, 郭頌, 等. 電解錳陽極泥的熱處理及其鉛離子的浸出. 安全與環境工程, 2016, 23(2):50 doi: 10.13578/j.cnki.issn.1671-1556.2016.02.010 [15] Qin Z C, Ming X Q, Li C X, et al. Leaching of manganese and selenium from electrolytic manganese anode slime with ammonium sulfite as reducing agent. Nonferrous Met (Extr Metall) , 2020(10): 55覃兆財, 明憲權, 李春霞, 等. 亞硫酸銨還原浸出電解錳陽極泥中錳和硒的研究. 有色金屬(冶煉部分), 2020(10):55 [16] Wang Y H, Qin Z C, Huang L Y, et al. Two-stage leaching of manganese and enrichment of selenium from electrolytic manganese anode slime. Hydrometall China, 2020, 39(2): 118 doi: 10.13355/j.cnki.sfyj.2020.02.008王雨紅, 覃兆財, 黃麗燕, 等. 從電解錳陽極泥中兩段浸出錳富集硒試驗研究. 濕法冶金, 2020, 39(2):118 doi: 10.13355/j.cnki.sfyj.2020.02.008 [17] Li Y F, Li X, Ye H, et al. Recovery of manganese anode slimes by sulfur reduction roasting-acid leaching process. Nonferrous Met (Extr Metall) , 2017(8): 13黎應芬, 李祥, 葉華, 等. 硫磺還原焙燒—酸浸法提取錳陽極泥. 有色金屬(冶煉部分), 2017(8):13 [18] Li Y F. Manganese anode slimes leaching in the FeS2?H2SO4?H2O system. Guangzhou Chem Ind, 2012, 40(14): 75 doi: 10.3969/j.issn.1001-9677.2012.14.031黎應芬. FeS2?H2SO4?H2O體系浸出錳陽極泥. 廣州化工, 2012, 40(14):75 doi: 10.3969/j.issn.1001-9677.2012.14.031 [19] Liu G Y, Shen H T, Wang Q. Recovery of manganese and lead from manganese electrowinning anode slime by reduction leaching with organic reductants. Min Metall Eng, 2014, 34(4): 92劉貴揚, 沈慧庭, 王強. 電解錳陽極泥有機還原浸出回收錳和鉛的研究. 礦冶工程, 2014, 34(4):92 [20] Wang B N, Zuo Q, Chen Y, et al. Study on leaching of chalcocite in H2O2?Fe2(SO4)3?H2SO4 system. Nonferrous Met (Extr Metall) , 2016(12): 5王百年, 左權, 陳洋, 等. H2O2?Fe2(SO4)3?H2SO4體系中輝銅礦的浸取研究. 有色金屬(冶煉部分), 2016(12):5 [21] Kang L H, Zhu P, Zhao S, et al. Leaching behavior of Mn and Fe in low grade manganese ore in NH4HSO4/H2O2 system. Hydrometall China, 2019, 38(2): 96康祿華, 朱鵬, 趙珊, 等. 低品位錳礦石在NH4HSO4/H2O2體系中的浸出行為. 濕法冶金, 2019, 38(2):96 [22] Zhou J K, Liu M D, Liu Y, et al. Experimental study on leaching of lithium from waste lithium iron phosphate with sulfuric acid and hydrogen peroxide. Min Metall Eng, 2020, 40(6): 79 doi: 10.3969/j.issn.0253-6099.2020.06.021周吉奎, 劉牡丹, 劉勇, 等. 硫酸–雙氧水浸出廢棄磷酸鐵鋰中鋰的實驗研究. 礦冶工程, 2020, 40(6):79 doi: 10.3969/j.issn.0253-6099.2020.06.021 [23] Liang W H, Zheng S L, Wu L J, et al. Experimental study on reducing leaching of African copper–cobalt oxide ore by hydrogen peroxide. Nonferrous Met Mater Eng, 2018, 39(4): 38梁偉華, 鄭世林, 吳理覺, 等. 雙氧水還原浸出非洲氧化銅鈷礦的試驗研究. 有色金屬材料與工程, 2018, 39(4):38 [24] Esmaeili M, Rastegar S O, Beigzadeh R, et al. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere, 2020, 254: 126670 doi: 10.1016/j.chemosphere.2020.126670 [25] Zhou J, Pan Q, Teng Y, et al. Leaching efficiency of hydrogen peroxide reduction manganese oxide ore under different conditions. China’s Manganese Ind, 2013, 31(2): 18 doi: 10.3969/j.issn.1002-4336.2013.02.006周杰, 潘奇, 滕亞, 等. 雙氧水還原氧化錳礦的浸出率研究. 中國錳業, 2013, 31(2):18 doi: 10.3969/j.issn.1002-4336.2013.02.006 [26] Petrovi? S J, Bogdanov? G D, Antonijevi? M M. Leaching of chalcopyrite with hydrogen peroxide in hydrochloric acid solution. Trans Nonferrous Met Soc China, 2018, 28(7): 1444 doi: 10.1016/S1003-6326(18)64788-0 [27] Liu J C, Xiong D L, Zhang J P, et al. The leaching process of iron and manganese in tungsten smelting slag. Nonferrous Met Sci Eng, 2018, 9(4): 14 doi: 10.13264/j.cnki.ysjskx.2018.04.003劉健聰, 熊道陵, 張建平, 等. 鎢冶煉渣中鐵、錳浸出工藝研究. 有色金屬科學與工程, 2018, 9(4):14 doi: 10.13264/j.cnki.ysjskx.2018.04.003 [28] Wang P P. Study on Extracting Nickel from Laterite Nickel Ore by Atmospheric Sulfuric Acid Leaching [Dissertation]. Nanning: Guangxi University, 2020王盼盼. 常壓硫酸浸出紅土鎳礦提取鎳的研究[學位論文]. 南寧: 廣西大學, 2020 [29] Shu J C, Li B, Chen M J, et al. An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material. Chemosphere, 2020, 253: 126896 doi: 10.1016/j.chemosphere.2020.126896 -