<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

利用雙氧水為還原劑濕法浸出電解錳陽極泥中錳的研究

趙俊杰 蔡林宏 舒建成 曹靜 楊勇 陳夢君

趙俊杰, 蔡林宏, 舒建成, 曹靜, 楊勇, 陳夢君. 利用雙氧水為還原劑濕法浸出電解錳陽極泥中錳的研究[J]. 工程科學學報, 2023, 45(2): 206-213. doi: 10.13374/j.issn2095-9389.2021.09.12.001
引用本文: 趙俊杰, 蔡林宏, 舒建成, 曹靜, 楊勇, 陳夢君. 利用雙氧水為還原劑濕法浸出電解錳陽極泥中錳的研究[J]. 工程科學學報, 2023, 45(2): 206-213. doi: 10.13374/j.issn2095-9389.2021.09.12.001
ZHAO Jun-jie, CAI Lin-hong, SHU Jian-cheng, CAO Jing, YANG Yong, CHEN Meng-jun. Hydrometallurgy leaching of manganese from electrolytic manganese anode slime using hydrogen peroxide as reducing agent[J]. Chinese Journal of Engineering, 2023, 45(2): 206-213. doi: 10.13374/j.issn2095-9389.2021.09.12.001
Citation: ZHAO Jun-jie, CAI Lin-hong, SHU Jian-cheng, CAO Jing, YANG Yong, CHEN Meng-jun. Hydrometallurgy leaching of manganese from electrolytic manganese anode slime using hydrogen peroxide as reducing agent[J]. Chinese Journal of Engineering, 2023, 45(2): 206-213. doi: 10.13374/j.issn2095-9389.2021.09.12.001

利用雙氧水為還原劑濕法浸出電解錳陽極泥中錳的研究

doi: 10.13374/j.issn2095-9389.2021.09.12.001
基金項目: 廣西壯族自治區重點研發計劃資助項目(桂科AB18126088);廣西壯族自治區創新驅動發展專項資助項目(桂科AA19182015);國家自然科學基金資助項目(52174386,21806132)
詳細信息
    通訊作者:

    E-mail: shujc@swust.edu.cn

  • 中圖分類號: TF803.2

Hydrometallurgy leaching of manganese from electrolytic manganese anode slime using hydrogen peroxide as reducing agent

More Information
  • 摘要: 電解錳陽極泥是生產電解金屬錳時陽極產生的副產物,其中含有大量錳、鉛等資源。如何高效浸出電解錳陽極泥中的錳是實現其資源化利用的關鍵,本研究提出了一種H2SO4?H2O2浸出體系強化電解錳陽極泥中錳浸出的新方法,研究了H2O2和H2SO4用量、反應溫度、反應時間以及固液比對電解錳陽極泥中錳浸出率的影響。研究結果表明,在陽極泥與H2O2質量比1∶0.8、陽極泥與H2SO4質量比1∶0.9、反應溫度45 ℃、固液質量比1∶10條件下浸出反應15 min,錳的浸出率可達97.23%,浸出渣中Pb的質量分數高達53.71%。浸出機理分析表明,酸性條件下電解錳陽極泥中錳氧化物被H2O2還原浸出,浸出液中Mn主要以MnSO4存在,浸出渣中Pb主要以PbSO4富集。本研究結果為電解錳陽極泥的資源化利用提供了一種新思路。

     

  • 圖  1  電解錳陽極泥與H2O2質量比對錳浸出率的影響

    (固液比1∶10,電解錳陽極泥與H2SO4質量比1∶0.9,浸出溫度45 ℃,浸出時間60 min)

    Figure  1.  Effect of the mass ratio of electrolytic manganese anode slime (EMAS) to H2O2 on the manganese leaching efficiency in EMAS

    (The solid–liquid mass ratio was 1∶10, the mass ratio of EMAS and H2SO4 was 1∶0.9, the leaching temperature was 45 ℃, and the leaching time was 60 min)

    圖  2  電解錳陽極泥與H2SO4質量比對陽極泥中錳浸出率的影響

    (固液比1∶10,電解錳陽極泥與H2O2質量為1∶0.8,浸出溫度45 ℃,浸出時間60 min)

    Figure  2.  Effect of the mass ratio of electrolytic manganese anode slime (EMAS) to H2SO4 on the manganese leaching efficiency in EMAS

    (The solid–liquid mass ratio was 1∶10, the mass ratio of EMAS to H2O2 was 1∶0.8, the leaching temperature was 45 ℃, and the leaching time was 60 min)

    圖  3  反應溫度對陽極泥中錳浸出率的影響

    (固液比1∶10,電解錳陽極泥與H2SO4質量比1∶0.9,電解錳陽極泥與H2O2質量比1∶0.8,浸出時間60 min)

    Figure  3.  Effect of reaction temperature on the manganese leaching efficiency in electrolytic manganese anode slime (EMAS)

    (The solid–liquid mass ratio was 1∶10, the mass ratio of EMAS to H2SO4 was 1∶0.9, the mass ratio of EMAS to H2O2 was 1∶0.8, and the leaching time was 60 min)

    圖  4  固液比對陽極泥中錳浸出率的影響

    (電解錳陽極泥與H2SO4質量1∶0.9,電解錳陽極泥與H2O2質量比1∶0.8,浸出溫度45 ℃,浸出時間60 min)

    Figure  4.  Effect of solid–liquid mass ratio on the manganese leaching efficiency in electrolytic manganese anode slime (EMAS)

    (The mass ratio of EMAS to H2SO4 was 1∶0.9, the mass ratio of EMAS to H2O2 was 1∶0.8, the leaching temperature was 45 ℃, and the leaching time was 60 min)

    圖  5  反應時間對陽極泥中錳浸出率的影響

    (固液比1∶10,電解錳陽極泥與H2SO4質量比1∶0.9,電解錳陽極泥與H2O2質量比1∶0.8,浸出溫度45 ℃)

    Figure  5.  Effect of reaction time on manganese leaching efficiency in electrolytic manganese anode slime (EMAS)

    (The solid–liquid mass ratio was 1∶10, the mass ratio of EMAS to H2SO4 was 1∶0.9, the mass ratio of EMAS to H2O2 was 1∶0.8, and the leaching temperature was 45 ℃)

    圖  6  原電解錳陽極泥(a)和最優條件浸出渣(b)XRD物相分析

    Figure  6.  X-ray diffraction phase analysis of raw electrolytic manganese anode slime (EMAS) (a) and leaching residue under optimal conditions (b)

    圖  7  原電解錳陽極泥(a)和最優條件下浸出渣(b) SEM-EDS分析

    Figure  7.  Scanning electron microscopy–energy-dispersive X-ray spectrometry analysis of the raw electrolytic manganese anode slime (EMAS) (a) and leaching residue under optimal conditions (b)

    圖  8  原電解錳陽極泥(a)和最優條件浸出渣(b)紅外吸收光譜圖

    Figure  8.  Infrared absorption spectra of raw electrolytic manganese anode slime (EMAS) (a) and leaching residue under optimal conditions (b)

    表  1  電解錳陽極泥化學成分分析(質量分數)

    Table  1.   Chemical composition analysis of electrolytic manganese anode slime %

    Category of EMASMnOPbOFe2O3SnO2CaOSeO2Other
    Raw EMAS76.545.710.070.062.010.2715.34
    Leaching EMAS#1.9057.856.141.480.430.5331.67
    Note: # When the mass ratio of electrolytic manganese anode slime (EMAS) to H2O2 was 1∶0.8, the mass ratio of EMAS to H2SO4 was 1∶0.9, the leaching temperature was 45 ℃, the solid–liquid mass ratio was 1∶10, and the leaching time was 15 min.
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Wei H K, Yang Y, Luo D, et al. A research on comprehensive recycling of electrolytic manganese anode slime. China’s Manganese Ind, 2017, 35(Suppl 1): 55

    魏漢可, 楊勇, 羅豆, 等. 電解金屬錳陽極泥的綜合回收利用研究. 中國錳業, 2017, 35(增刊1): 55
    [2] Tan L Q, Yang J. Operation analysis of electrolytic manganese innovation alliance from june to august 2021. China Manganese Ind, 2021, 39(4): 69

    譚立群, 楊娟. 2021年6~8月電解金屬錳創新聯盟運行分析. 中國錳業, 2021, 39(4):69
    [3] Huang L Q, Bi Y F, Mu L L, et al. The process and mechanism of electrolytic manganese anode slime lead removal. Adv Mater Res, 2014, 878: 163 doi: 10.4028/www.scientific.net/AMR.878.163
    [4] Huang L Y, Long H Y, Su H F. Reduction of selenium in electrolytic manganese anodic solution using ammonium sulfite. Hydrometall China, 2021, 40(2): 125

    黃麗燕, 龍湖燕, 粟海鋒. 用亞硫酸銨從電解錳陽極液中還原回收硒. 濕法冶金, 2021, 40(2):125
    [5] Li D H. Study on the Utilization of Electrolytic Manganese Anode Slime [Dissertation]. Chongqing: Chongqing University, 2011

    李東海. 電解錳陽極泥的利用研究[學位論文]. 重慶: 重慶大學, 2011
    [6] Wu Y, Shen H T. Comprehensive recycling of manganese anode slime with modified reductant. Min Metall Eng, 2016, 36(5): 69 doi: 10.3969/j.issn.0253-6099.2016.05.018

    吳焱, 沈慧庭. 改性無機還原劑還原浸出電解錳陽極泥綜合回收錳鉛研究. 礦冶工程, 2016, 36(5):69 doi: 10.3969/j.issn.0253-6099.2016.05.018
    [7] Fu L, Man R L, Fu Q, et al. Preparation of lithium manganate from electrolytic manganese anode slime. Guangdong Chem Ind, 2018, 45(8): 13 doi: 10.3969/j.issn.1007-1865.2018.08.007

    符磊, 滿瑞林, 扶強, 等. 電解錳陽極泥制備錳酸鋰. 廣東化工, 2018, 45(8):13 doi: 10.3969/j.issn.1007-1865.2018.08.007
    [8] Wang B J, Mu L L, Guo S, et al. Lead leaching mechanism and kinetics in electrolytic manganese anode slime. Hydrometallurgy, 2019, 183: 98 doi: 10.1016/j.hydromet.2018.11.015
    [9] Gong Q K. Experimental study on removal of impurity by electrolytic manganese anode sludge instead of hydrogen peroxide. Xinjiang Nonferrous Met, 2019, 42(4): 51 doi: 10.16206/j.cnki.65-1136/tg.2019.04.023

    宮清顆. 電解錳陽極泥代替雙氧水除雜試驗研究. 新疆有色金屬, 2019, 42(4):51 doi: 10.16206/j.cnki.65-1136/tg.2019.04.023
    [10] Xie H M, Li S W, Guo Z H, et al. Extraction of lead from electrolytic manganese anode mud by microwave coupled ultrasound technology. J Hazard Mater, 2021, 407: 124622 doi: 10.1016/j.jhazmat.2020.124622
    [11] Shang W, Wang X F, Wen Y Q, et al. Preparation of battery material manganese dioxide using electrolytic manganese anode mud. Hydrometall China, 2015, 34(2): 123 doi: 10.13355/j.cnki.sfyj.2015.02.11

    尚偉, 王旭峰, 溫玉清, 等. 用錳電解陽極泥制備電池材料二氧化錳. 濕法冶金, 2015, 34(2):123 doi: 10.13355/j.cnki.sfyj.2015.02.11
    [12] Yang H. Using Electrolytic Manganese Anode Slime Preparation of Precursor Synthesize the Manganese Lithium Battery Material [Dissertation]. Wuhan: Wuhan Institute of Technology, 2016

    楊歡. 利用電解錳陽極泥制備的前驅體合成錳基鋰電池材料[學位論文]. 武漢: 武漢工程大學, 2016
    [13] Huang L Q. Research on Preparation of Manganate Cathode Materials for Lithium Batteries with Electrolytic Manganese Anode Slime [Dissertation]. Wuhan: Wuhan Institute of Technology, 2014

    黃良取. 電解錳陽極泥制備錳酸鋰電池正極材料的工藝研究[學位論文]. 武漢: 武漢工程大學, 2014
    [14] Liu L, Zhang H B, Guo S, et al. Heat treatment of electrolytic manganese anode slime and leaching of lead ions. Saf Environ Eng, 2016, 23(2): 50 doi: 10.13578/j.cnki.issn.1671-1556.2016.02.010

    劉璐, 張宏波, 郭頌, 等. 電解錳陽極泥的熱處理及其鉛離子的浸出. 安全與環境工程, 2016, 23(2):50 doi: 10.13578/j.cnki.issn.1671-1556.2016.02.010
    [15] Qin Z C, Ming X Q, Li C X, et al. Leaching of manganese and selenium from electrolytic manganese anode slime with ammonium sulfite as reducing agent. Nonferrous Met (Extr Metall), 2020(10): 55

    覃兆財, 明憲權, 李春霞, 等. 亞硫酸銨還原浸出電解錳陽極泥中錳和硒的研究. 有色金屬(冶煉部分), 2020(10):55
    [16] Wang Y H, Qin Z C, Huang L Y, et al. Two-stage leaching of manganese and enrichment of selenium from electrolytic manganese anode slime. Hydrometall China, 2020, 39(2): 118 doi: 10.13355/j.cnki.sfyj.2020.02.008

    王雨紅, 覃兆財, 黃麗燕, 等. 從電解錳陽極泥中兩段浸出錳富集硒試驗研究. 濕法冶金, 2020, 39(2):118 doi: 10.13355/j.cnki.sfyj.2020.02.008
    [17] Li Y F, Li X, Ye H, et al. Recovery of manganese anode slimes by sulfur reduction roasting-acid leaching process. Nonferrous Met (Extr Metall), 2017(8): 13

    黎應芬, 李祥, 葉華, 等. 硫磺還原焙燒—酸浸法提取錳陽極泥. 有色金屬(冶煉部分), 2017(8):13
    [18] Li Y F. Manganese anode slimes leaching in the FeS2?H2SO4?H2O system. Guangzhou Chem Ind, 2012, 40(14): 75 doi: 10.3969/j.issn.1001-9677.2012.14.031

    黎應芬. FeS2?H2SO4?H2O體系浸出錳陽極泥. 廣州化工, 2012, 40(14):75 doi: 10.3969/j.issn.1001-9677.2012.14.031
    [19] Liu G Y, Shen H T, Wang Q. Recovery of manganese and lead from manganese electrowinning anode slime by reduction leaching with organic reductants. Min Metall Eng, 2014, 34(4): 92

    劉貴揚, 沈慧庭, 王強. 電解錳陽極泥有機還原浸出回收錳和鉛的研究. 礦冶工程, 2014, 34(4):92
    [20] Wang B N, Zuo Q, Chen Y, et al. Study on leaching of chalcocite in H2O2?Fe2(SO4)3?H2SO4 system. Nonferrous Met (Extr Metall), 2016(12): 5

    王百年, 左權, 陳洋, 等. H2O2?Fe2(SO4)3?H2SO4體系中輝銅礦的浸取研究. 有色金屬(冶煉部分), 2016(12):5
    [21] Kang L H, Zhu P, Zhao S, et al. Leaching behavior of Mn and Fe in low grade manganese ore in NH4HSO4/H2O2 system. Hydrometall China, 2019, 38(2): 96

    康祿華, 朱鵬, 趙珊, 等. 低品位錳礦石在NH4HSO4/H2O2體系中的浸出行為. 濕法冶金, 2019, 38(2):96
    [22] Zhou J K, Liu M D, Liu Y, et al. Experimental study on leaching of lithium from waste lithium iron phosphate with sulfuric acid and hydrogen peroxide. Min Metall Eng, 2020, 40(6): 79 doi: 10.3969/j.issn.0253-6099.2020.06.021

    周吉奎, 劉牡丹, 劉勇, 等. 硫酸–雙氧水浸出廢棄磷酸鐵鋰中鋰的實驗研究. 礦冶工程, 2020, 40(6):79 doi: 10.3969/j.issn.0253-6099.2020.06.021
    [23] Liang W H, Zheng S L, Wu L J, et al. Experimental study on reducing leaching of African copper–cobalt oxide ore by hydrogen peroxide. Nonferrous Met Mater Eng, 2018, 39(4): 38

    梁偉華, 鄭世林, 吳理覺, 等. 雙氧水還原浸出非洲氧化銅鈷礦的試驗研究. 有色金屬材料與工程, 2018, 39(4):38
    [24] Esmaeili M, Rastegar S O, Beigzadeh R, et al. Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere, 2020, 254: 126670 doi: 10.1016/j.chemosphere.2020.126670
    [25] Zhou J, Pan Q, Teng Y, et al. Leaching efficiency of hydrogen peroxide reduction manganese oxide ore under different conditions. Chinas Manganese Ind, 2013, 31(2): 18 doi: 10.3969/j.issn.1002-4336.2013.02.006

    周杰, 潘奇, 滕亞, 等. 雙氧水還原氧化錳礦的浸出率研究. 中國錳業, 2013, 31(2):18 doi: 10.3969/j.issn.1002-4336.2013.02.006
    [26] Petrovi? S J, Bogdanov? G D, Antonijevi? M M. Leaching of chalcopyrite with hydrogen peroxide in hydrochloric acid solution. Trans Nonferrous Met Soc China, 2018, 28(7): 1444 doi: 10.1016/S1003-6326(18)64788-0
    [27] Liu J C, Xiong D L, Zhang J P, et al. The leaching process of iron and manganese in tungsten smelting slag. Nonferrous Met Sci Eng, 2018, 9(4): 14 doi: 10.13264/j.cnki.ysjskx.2018.04.003

    劉健聰, 熊道陵, 張建平, 等. 鎢冶煉渣中鐵、錳浸出工藝研究. 有色金屬科學與工程, 2018, 9(4):14 doi: 10.13264/j.cnki.ysjskx.2018.04.003
    [28] Wang P P. Study on Extracting Nickel from Laterite Nickel Ore by Atmospheric Sulfuric Acid Leaching [Dissertation]. Nanning: Guangxi University, 2020

    王盼盼. 常壓硫酸浸出紅土鎳礦提取鎳的研究[學位論文]. 南寧: 廣西大學, 2020
    [29] Shu J C, Li B, Chen M J, et al. An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material. Chemosphere, 2020, 253: 126896 doi: 10.1016/j.chemosphere.2020.126896
  • 加載中
圖(8) / 表(1)
計量
  • 文章訪問數:  674
  • HTML全文瀏覽量:  259
  • PDF下載量:  109
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-12
  • 網絡出版日期:  2021-12-06
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回