Effect of Al2O3 on the physical and chemical properties of ultrahigh-basicity continuous casting mold flux
-
摘要: Al2O3是一種兩性氧化物,在高堿度條件下呈現酸性氧化物特征,而在低堿度條件下表現出堿性氧化物的行為,是冶金熔渣中常見的一種組元。以超高堿度保護渣(綜合堿度R=1.75)為研究對象,分析了Al2O3對保護渣流動特性、熔化特性和凝固特性的影響規律。研究結果顯示:渣中Al2O3質量分數每增加1%,熔化溫度上升5 ℃左右,轉折溫度下降12 ℃左右,開始結晶溫度平均下降11 ℃左右。平均結晶速率隨渣中Al2O3質量分數的增加而減小。且隨著Al2O3質量分數的增加,保護渣結晶礦相中晶體比例逐漸降低,但晶體保持槍晶石的種類不變。Abstract: Aluminum oxide is a common component in mold powder and is a kind of amphoteric oxide. It shows the characteristics of acid oxide under high-alkalinity conditions and of alkaline oxide under low-alkalinity conditions. In general, adding Al2O3 to the traditional CaO–SiO2-based mold flux will increase the viscosity and melting point of the mold flux, which will consequently reduce the mold flux’s ability to adsorb inclusions. In addition, as the content of Al2O3 in the slag increases, the solidification temperature of the slag can be reduced, thereby improving the lubricating ability of the mold flux. At present, the research on the crystallization performance of Al2O3 on mold fluxes mainly focuses on low-reactivity or non-reactive mold fluxes for high-aluminum steel and high-titanium steel. Relevant studies have shown that Al2O3 in low-reactivity or non-reactive mold fluxes can increase the crystallization incubation time of the mold flux, reduce the critical cooling rate of the flux, and inhibit the crystallization process of the flux. In mold powder with low to medium alkalinity content (R = 1.2–1.5) or new CaO–Al2O3-based low-reactivity mold powder, the addition of Al2O3 will increase the viscosity of the slag and melting point and decrease (or increase) the solidification temperature and crystallization performance. In recent years, ultrahigh-alkalinity mold powder (R = 1.65–1.85) has been successfully applied in peritectic steel continuous casting mold powder, effectively coordinating the contradiction between the mold powder heat transfer and lubrication function. However, there is no relevant report on the influence of Al2O3 on the performance of mold flux under ultrahigh-alkalinity conditions. In this study, an ultra-high-alkalinity mold flux (comprehensive alkalinity R = 1.75) is taken as the research object, and the influence of Al2O3 on the flow, melting, and solidification characteristics of the mold flux is analyzed. The research results show that as Al2O3 increases, the viscosity and melting temperature increase, and the transition temperature decreases. Particularly, with an average increase of 1% Al2O3, the melting temperature of the mold flux will increase by approximately 5 ℃, and the turning temperature will decrease by approximately 12 ℃. In addition, as the Al2O3 content in the slag increases by 1%, the starting crystallization temperature drops by approximately 11 °C on average. The average crystallization rate decreases with the increase in Al2O3 in the slag, and Al2O3 has a significant effect on the crystallization rate. Moreover, with the increase in the content of Al2O3 in the slag, the proportion of crystals in the crystalline phase of the mold slag gradually decreases, but the type of crystals remains unchanged.
-
Key words:
- Al2O3 /
- mold fluxes /
- ultra-high basicity /
- solidification characteristic /
- crystallization property
-
圖 5 不同Al2O3含量保護渣凝固結晶計算結果. (a)
${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =1%; (b)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =2%; (c)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =3%; (d)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =4%; (e)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =5%; (f)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =6%; (g)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =7%; (h)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =8%Figure 5. Calculation results of the solidification crystallization of mold fluxes with different Al2O3 contents: (a)
${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =1%; (b)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =2%; (c)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =3%; (d)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =4%; (e)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =5%; (f)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =6%; (g)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =7%; (h)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =8%圖 6 不同Al2O3含量保護渣CCT曲線與開始結晶溫度.(a)不同Al2O3含量保護渣CCT曲線;(b)不同Al2O3含量保護渣開始結晶溫度
Figure 6. CCT curves and initial crystallization temperature of mold fluxes with different Al2O3 contents: (a) CCT curves of mold fluxes with different Al2O3 contents; (b) initial crystallization temperature of mold fluxes with different Al2O3 contents
圖 7 不同Al2O3含量保護渣的結晶時間與平均結晶速率. (a) 不同Al2O3含量保護渣的結晶時間;(b) 不同Al2O3含量保護渣的平均結晶速率
Figure 7. Crystallization time and average crystallization rate of mold fluxes with different Al2O3 contents: (a) crystallization time of mold fluxes with different Al2O3 contents; (b) average crystallization rate of different Al2O3 contents
圖 8 冷凝斷面. (a)
${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =2%; (b)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =4%; (c)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =6%; (d)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =8%Figure 8. Condensation section of mold fluxes: (a)
${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ = 2%; (b)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ = 4%; (c)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ = 6%; (d)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ = 8%圖 9 A1~A4保護渣的XRD圖. (a)
${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =2%; (b)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =4%; (c)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =6%; (d)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =8%Figure 9. XRD of mold fluxes: (a)
${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =2%; (b)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =4%; (c)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =6%; (d)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =8%圖 10 保護渣電鏡掃描圖:(a)
${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =2%; (b)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =4%; (c)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =6%; (d)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =8%Figure 10. SEM images of mold fluxes: (a)
${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =2%; (b)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =4%; (c)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =6%; (d)${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ =8%表 1 保護渣的化學組分及其含量(質量分數)
Table 1. Chemical composition and content of mold fluxes
Sample number Chemical composition/% CaO SiO2 CaF2 Na2O MgO Al2O3 Li2O Fe2O3 A1 34.81 28.74 21.55 6 3 2 2.4 1.5 A2 33.54 28.01 21.55 6 3 4 2.4 1.5 A3 32.27 27.28 21.55 6 3 6 2.4 1.5 A4 31.00 26.55 21.55 6 3 8 2.4 1.5 表 2 保護渣能譜分析結果(質量分數)
Table 2. Results of the energy spectrum analysis of mold fluxes
% Sample number Spectrogram Chemical element Ca Si O F Na Mg Al Sum A1 1 35.56 14.91 31.99 17.54 — — — 100.00 2 40.77 16.33 30.42 12.48 — — — 100.00 3 36.27 15.6 35.49 12.65 — — — 100.00 A2 1 37.6 16.1 33.0 13.3 — — — 100.00 2 38.9 15.1 30.4 15.6 — — — 100.00 3 39.2 15.8 31.2 13.7 — — — 99.90 A3 1 38.5 14.94 31.39 15.17 — — — 100.00 2 41.26 15.05 29.05 14.65 — — — 100.00 3 40.88 14.7 30.44 13.97 — — — 99.99 A4 1 38.4 14.91 32.39 13.07 — 0.53 0.7 100.00 2 26.46 13.16 36.24 10.63 7.5 1.44 4.56 99.99 3 30.34 13.68 33.06 13.35 3.62 1.85 4.11 100.00 www.77susu.com -
參考文獻
[1] Zhang S D. Study on Properties of Lubrication, Crystallization and Radiation Heat Transfer of Continuous Casting Mold Fluxes for High-Mn and High-Al Steels [Dissertation]. Chongqing: Chongqing University, 2019張少達. 高錳高鋁鋼保護渣潤滑、結晶和輻射傳熱性能的研究[學位論文]. 重慶大學, 2019 [2] Zhang J. Influence of the Al2O3 content on the crystallization properties of CaO?SiO2?Al2O3?CaF2?Na2O mold fluxes. Foundry Technol, 2011, 32(4): 511張江. Al2O3含量對CaO?SiO2?Al2O3?CaF2?Na2O保護渣結晶性能的影響. 鑄造技術, 2011, 32(4):511 [3] Lu Y Q, Zhang G D, Jiang M F, et al. Study on adsorbility of mould flux to Al2O3 inclusion. J Northeast Univ Nat Sci, 2010, 31(4): 539 doi: 10.3969/j.issn.1005-3026.2010.04.021盧艷青, 張國棟, 姜茂發, 等. 連鑄保護渣吸附Al2O3夾雜能力的研究. 東北大學學報(自然科學版), 2010, 31(4):539 doi: 10.3969/j.issn.1005-3026.2010.04.021 [4] Wang Y, Yang J C. Effect of basicity and Al2O3 content on viscosity and melting temperature of mold flux of medium carbon steel in wide and heavy plate continuous casting. J Inn Mong Univ Sci Technol, 2012, 31(4): 320王玉, 楊吉春. 堿度和Al2O3對中碳鋼寬厚板連鑄結晶器保護渣粘度和熔化溫度的影響. 內蒙古科技大學學報, 2012, 31(4):320 [5] Sridhar S, Mills K C, Afrange O D C, et al. Break temperatures of mould fluxes and their relevance to continuous casting. Ironmak Steelmak, 2000, 27(3): 238 doi: 10.1179/030192300677534 [6] He Y M, Wang Q, Hu B, et al. Application of high-basicity mould fluxes for continuous casting of large steel slabs. Ironmak Steelmak, 2016, 43(8): 588 doi: 10.1080/03019233.2016.1139224 [7] Long X. Study on Structure Characteristics of Solid Slag Films of Mold Fluxes for Peritectic Steel Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2018龍瀟. 包晶鋼連鑄保護渣渣膜凝固結構特征研究[學位論文]. 重慶: 重慶大學, 2018 [8] Zhang S D, Li M, Zhu L L, et al. Effect of substituting Na2O for SiO2 on the non-isothermal crystallization behavior of CaO?BaO?Al2O3 based mold fluxes for casting high Al steels. Ceram Int, 2019, 45(9): 11296 doi: 10.1016/j.ceramint.2019.02.206 [9] Zhu L L. Theoretical Research and Application of Ultrahigh-Basicity Mold Fluxes for Peritectic Steel [Dissertation]. Chongqing: Chongqing University, 2018朱禮龍. 包晶鋼用超高堿度保護渣的理論研究和應用[學位論文]. 重慶: 重慶大學, 2018 [10] Jia B, Li M, Wang S, et al. Molecular dynamic simulation of the structure and viscosity properties of CaO–SiO2–Al2O3 slags with low basicity//The 10th Pacific Rim International Conference on Advanced Materials and Processing. Xi'an, 2019 [11] Diao J, Zhou W, Gu P. Competitive growth of crystals in vanadium–chromium slag. CrystEngComm, 2016, 18(33): 6272 doi: 10.1039/C6CE01087C [12] Shu J, Jin S T, Zhang L, et al. Influence of cooling rate on crystallization properties of mold fluxes. J Univ Sci Technol Beijing, 2001, 23(5): 421 doi: 10.3321/j.issn:1001-053X.2001.05.009舒俊, 金山同, 張麗, 等. 冷卻速率對連鑄保護渣結晶性能的影響. 北京科技大學學報, 2001, 23(5):421 doi: 10.3321/j.issn:1001-053X.2001.05.009 [13] Shu J, Jin S T, Zhang L, et al. Crystallization temperature of continuous casting mold fluxes. J Univ Sci Technol Beijing, 2000, 22(6): 508 doi: 10.3321/j.issn:1001-053X.2000.06.006舒俊, 金山同, 張麗, 等. 連鑄結晶器保護渣結晶溫度. 北京科技大學學報, 2000, 22(6):508 doi: 10.3321/j.issn:1001-053X.2000.06.006 [14] Shi C B, Seo M D, Wang H, et al. Crystallization kinetics and mechanism of CaO–Al2O3-based mold flux for casting high-aluminum TRIP steels. Metall Mater Trans B, 2015, 46(1): 345 doi: 10.1007/s11663-014-0180-2 [15] Lanyi M D, Rosa C J. Viscosity of casting fluxes used during continuous casting of steel. Metall Trans B, 1981, 12(2): 287 doi: 10.1007/BF02654462 [16] Mizuno H, Esaka H, Shinozuka K, et al. Analysis of the crystallization of mold flux for continuous casting of steel. ISIJ Int, 2008, 48(3): 277 doi: 10.2355/isijinternational.48.277 [17] Lu B X, Wang W L. Effects of fluorine and BaO on the crystallization behavior of lime–alumina-based mold flux for casting high-Al steels. Metall Mater Trans B, 2015, 46(2): 852 doi: 10.1007/s11663-014-0285-7 [18] Long X, He S P, Xu J F, et al. Properties of high basicity mold fluxes for peritectic steel slab casting. J Iron Steel Res Int, 2012, 19(7): 39 doi: 10.1016/S1006-706X(12)60111-3 [19] Nakada H, Nagata K. Crystallization of CaO–SiO2–TiO2 slag as a candidate for fluorine free mold flux. ISIJ Int, 2006, 46(3): 441 doi: 10.2355/isijinternational.46.441 [20] Park J Y, Ryu J W, Sohn I. In-situ crystallization of highly volatile commercial mold flux using an isolated observation system in the confocal laser scanning microscope. Metall Mater Trans B, 2014, 45(4): 1186 doi: 10.1007/s11663-014-0087-y [21] Mutale C T, Cramb A W, Claudon T. Observation of the crystallization hehavior of a slag contain 46 wt pct CaO, 46 wt pct SiO2, 6 wt pct Al2O3, and 2 wt pct Na2O using the double hot thermocouple technique. Metall Mater Trans B, 2005, 36(3): 417 doi: 10.1007/s11663-005-0072-6 [22] Zhu L L, Wang Q, Wang Q Q, et al. The relationship between crystallization and break temperature of mould flux. Ironmak Steelmak, 2019, 46(9): 865 doi: 10.1080/03019233.2018.1552773 [23] Miodownik A P, Saunders N. Modelling of materials properties in duplex stainless steels. Mater Sci Technol, 2002, 18(8): 861 doi: 10.1179/026708302225004694 [24] Lu B X, Chen K, Wang W L, et al. Effects of Li2O and Na2O on The crystallization behavior of Lime-Alumina-based mold flux for casting high-Al steels. Metall Mater Trans B, 2014, 45(4): 1496 doi: 10.1007/s11663-014-0063-6 [25] Zhu L L, Wang Q, Wang Q Q, et al. In situ observation of crystallization of mold slag using a digital optical microscope in an infrared furnace. J Am Ceram Soc, 2018: jace.16085 doi: 10.1111/jace.16085 -