<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

Al2O3對超高堿度連鑄保護渣理化性能的影響

李剛 潘偉杰 李民 朱禮龍 何生平

李剛, 潘偉杰, 李民, 朱禮龍, 何生平. Al2O3對超高堿度連鑄保護渣理化性能的影響[J]. 工程科學學報, 2023, 45(2): 234-242. doi: 10.13374/j.issn2095-9389.2021.09.07.003
引用本文: 李剛, 潘偉杰, 李民, 朱禮龍, 何生平. Al2O3對超高堿度連鑄保護渣理化性能的影響[J]. 工程科學學報, 2023, 45(2): 234-242. doi: 10.13374/j.issn2095-9389.2021.09.07.003
LI Gang, PAN Wei-jie, LI Min, ZHU Li-long, HE Sheng-ping. Effect of Al2O3 on the physical and chemical properties of ultrahigh-basicity continuous casting mold flux[J]. Chinese Journal of Engineering, 2023, 45(2): 234-242. doi: 10.13374/j.issn2095-9389.2021.09.07.003
Citation: LI Gang, PAN Wei-jie, LI Min, ZHU Li-long, HE Sheng-ping. Effect of Al2O3 on the physical and chemical properties of ultrahigh-basicity continuous casting mold flux[J]. Chinese Journal of Engineering, 2023, 45(2): 234-242. doi: 10.13374/j.issn2095-9389.2021.09.07.003

Al2O3對超高堿度連鑄保護渣理化性能的影響

doi: 10.13374/j.issn2095-9389.2021.09.07.003
基金項目: 國家自然科學基金面上資助項目(51874057,52074054);重慶市自然科學基金資助項目 (stc2020jcyj-msxmX0605)
詳細信息
    通訊作者:

    E-mail: heshp@cqu.edu.cn

  • 中圖分類號: TG142.71

Effect of Al2O3 on the physical and chemical properties of ultrahigh-basicity continuous casting mold flux

More Information
  • 摘要: Al2O3是一種兩性氧化物,在高堿度條件下呈現酸性氧化物特征,而在低堿度條件下表現出堿性氧化物的行為,是冶金熔渣中常見的一種組元。以超高堿度保護渣(綜合堿度R=1.75)為研究對象,分析了Al2O3對保護渣流動特性、熔化特性和凝固特性的影響規律。研究結果顯示:渣中Al2O3質量分數每增加1%,熔化溫度上升5 ℃左右,轉折溫度下降12 ℃左右,開始結晶溫度平均下降11 ℃左右。平均結晶速率隨渣中Al2O3質量分數的增加而減小。且隨著Al2O3質量分數的增加,保護渣結晶礦相中晶體比例逐漸降低,但晶體保持槍晶石的種類不變。

     

  • 圖  1  結晶性能測試裝置示意圖

    Figure  1.  Schematics of the experimental apparatus for crystallization.

    圖  2  保護渣的結晶行為.(a)渣樣熔清;(b)開始結晶(晶體比例5%);(c)晶體生長(晶體比例50%);(d)結晶完全(晶體比例90%)

    Figure  2.  Crystallization behavior: (a) melting of sample; (b) beginning of crystallization (crystal ratio is 5%); (c) crystal growth (crystal ratio is 50%); (d) complete crystallization (crystal ratio is 90%)

    圖  3  A1~A4渣的基礎性能.(a) 黏溫曲線;(b) 轉折溫度

    Figure  3.  Basic properties of mold fluxes A1?A4: (a) viscosity–temperature curve; (b) break temperature

    圖  4  不同Al2O3含量保護渣的熔化溫度

    Figure  4.  Melting temperature of mold fluxes with different Al2O3 contents

    圖  5  不同Al2O3含量保護渣凝固結晶計算結果. (a) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=1%; (b) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=2%; (c) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=3%; (d) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=4%; (e) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=5%; (f) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=6%; (g) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=7%; (h) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=8%

    Figure  5.  Calculation results of the solidification crystallization of mold fluxes with different Al2O3 contents: (a) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=1%; (b) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=2%; (c) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=3%; (d) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=4%; (e) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=5%; (f) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=6%; (g) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=7%; (h) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=8%

    圖  6  不同Al2O3含量保護渣CCT曲線與開始結晶溫度.(a)不同Al2O3含量保護渣CCT曲線;(b)不同Al2O3含量保護渣開始結晶溫度

    Figure  6.  CCT curves and initial crystallization temperature of mold fluxes with different Al2O3 contents: (a) CCT curves of mold fluxes with different Al2O3 contents; (b) initial crystallization temperature of mold fluxes with different Al2O3 contents

    圖  7  不同Al2O3含量保護渣的結晶時間與平均結晶速率. (a) 不同Al2O3含量保護渣的結晶時間;(b) 不同Al2O3含量保護渣的平均結晶速率

    Figure  7.  Crystallization time and average crystallization rate of mold fluxes with different Al2O3 contents: (a) crystallization time of mold fluxes with different Al2O3 contents; (b) average crystallization rate of different Al2O3 contents

    圖  8  冷凝斷面. (a) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=2%; (b) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=4%; (c) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=6%; (d) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=8%

    Figure  8.  Condensation section of mold fluxes: (a) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ = 2%; (b) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ = 4%; (c) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ = 6%; (d) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$ = 8%

    圖  9  A1~A4保護渣的XRD圖. (a) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=2%; (b) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=4%; (c) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=6%; (d) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=8%

    Figure  9.  XRD of mold fluxes: (a) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=2%; (b) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=4%; (c) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=6%; (d) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=8%

    圖  10  保護渣電鏡掃描圖:(a) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=2%; (b) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=4%; (c) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=6%; (d) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=8%

    Figure  10.  SEM images of mold fluxes: (a) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=2%; (b) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=4%; (c) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=6%; (d) ${w_{{{\rm{A}}}{{\rm{l}}_2}{{{\rm{O}}}_3}}}$=8%

    表  1  保護渣的化學組分及其含量(質量分數)

    Table  1.   Chemical composition and content of mold fluxes

    Sample numberChemical composition/%
    CaOSiO2CaF2Na2OMgOAl2O3Li2OFe2O3
    A134.8128.7421.556322.41.5
    A233.5428.0121.556342.41.5
    A332.2727.2821.556362.41.5
    A431.0026.5521.556382.41.5
    下載: 導出CSV

    表  2  保護渣能譜分析結果(質量分數)

    Table  2.   Results of the energy spectrum analysis of mold fluxes %

    Sample numberSpectrogramChemical element
    CaSiOFNaMgAlSum
    A1135.5614.9131.9917.54100.00
    240.7716.3330.4212.48100.00
    336.2715.635.4912.65100.00
    A2137.616.133.013.3100.00
    238.915.130.415.6100.00
    339.215.831.213.799.90
    A3138.514.9431.3915.17100.00
    241.2615.0529.0514.65100.00
    340.8814.730.4413.9799.99
    A4138.414.9132.3913.070.530.7100.00
    226.4613.1636.2410.637.51.444.5699.99
    330.3413.6833.0613.353.621.854.11100.00
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Zhang S D. Study on Properties of Lubrication, Crystallization and Radiation Heat Transfer of Continuous Casting Mold Fluxes for High-Mn and High-Al Steels [Dissertation]. Chongqing: Chongqing University, 2019

    張少達. 高錳高鋁鋼保護渣潤滑、結晶和輻射傳熱性能的研究[學位論文]. 重慶大學, 2019
    [2] Zhang J. Influence of the Al2O3 content on the crystallization properties of CaO?SiO2?Al2O3?CaF2?Na2O mold fluxes. Foundry Technol, 2011, 32(4): 511

    張江. Al2O3含量對CaO?SiO2?Al2O3?CaF2?Na2O保護渣結晶性能的影響. 鑄造技術, 2011, 32(4):511
    [3] Lu Y Q, Zhang G D, Jiang M F, et al. Study on adsorbility of mould flux to Al2O3 inclusion. J Northeast Univ Nat Sci, 2010, 31(4): 539 doi: 10.3969/j.issn.1005-3026.2010.04.021

    盧艷青, 張國棟, 姜茂發, 等. 連鑄保護渣吸附Al2O3夾雜能力的研究. 東北大學學報(自然科學版), 2010, 31(4):539 doi: 10.3969/j.issn.1005-3026.2010.04.021
    [4] Wang Y, Yang J C. Effect of basicity and Al2O3 content on viscosity and melting temperature of mold flux of medium carbon steel in wide and heavy plate continuous casting. J Inn Mong Univ Sci Technol, 2012, 31(4): 320

    王玉, 楊吉春. 堿度和Al2O3對中碳鋼寬厚板連鑄結晶器保護渣粘度和熔化溫度的影響. 內蒙古科技大學學報, 2012, 31(4):320
    [5] Sridhar S, Mills K C, Afrange O D C, et al. Break temperatures of mould fluxes and their relevance to continuous casting. Ironmak Steelmak, 2000, 27(3): 238 doi: 10.1179/030192300677534
    [6] He Y M, Wang Q, Hu B, et al. Application of high-basicity mould fluxes for continuous casting of large steel slabs. Ironmak Steelmak, 2016, 43(8): 588 doi: 10.1080/03019233.2016.1139224
    [7] Long X. Study on Structure Characteristics of Solid Slag Films of Mold Fluxes for Peritectic Steel Continuous Casting [Dissertation]. Chongqing: Chongqing University, 2018

    龍瀟. 包晶鋼連鑄保護渣渣膜凝固結構特征研究[學位論文]. 重慶: 重慶大學, 2018
    [8] Zhang S D, Li M, Zhu L L, et al. Effect of substituting Na2O for SiO2 on the non-isothermal crystallization behavior of CaO?BaO?Al2O3 based mold fluxes for casting high Al steels. Ceram Int, 2019, 45(9): 11296 doi: 10.1016/j.ceramint.2019.02.206
    [9] Zhu L L. Theoretical Research and Application of Ultrahigh-Basicity Mold Fluxes for Peritectic Steel [Dissertation]. Chongqing: Chongqing University, 2018

    朱禮龍. 包晶鋼用超高堿度保護渣的理論研究和應用[學位論文]. 重慶: 重慶大學, 2018
    [10] Jia B, Li M, Wang S, et al. Molecular dynamic simulation of the structure and viscosity properties of CaO–SiO2–Al2O3 slags with low basicity//The 10th Pacific Rim International Conference on Advanced Materials and Processing. Xi'an, 2019
    [11] Diao J, Zhou W, Gu P. Competitive growth of crystals in vanadium–chromium slag. CrystEngComm, 2016, 18(33): 6272 doi: 10.1039/C6CE01087C
    [12] Shu J, Jin S T, Zhang L, et al. Influence of cooling rate on crystallization properties of mold fluxes. J Univ Sci Technol Beijing, 2001, 23(5): 421 doi: 10.3321/j.issn:1001-053X.2001.05.009

    舒俊, 金山同, 張麗, 等. 冷卻速率對連鑄保護渣結晶性能的影響. 北京科技大學學報, 2001, 23(5):421 doi: 10.3321/j.issn:1001-053X.2001.05.009
    [13] Shu J, Jin S T, Zhang L, et al. Crystallization temperature of continuous casting mold fluxes. J Univ Sci Technol Beijing, 2000, 22(6): 508 doi: 10.3321/j.issn:1001-053X.2000.06.006

    舒俊, 金山同, 張麗, 等. 連鑄結晶器保護渣結晶溫度. 北京科技大學學報, 2000, 22(6):508 doi: 10.3321/j.issn:1001-053X.2000.06.006
    [14] Shi C B, Seo M D, Wang H, et al. Crystallization kinetics and mechanism of CaO–Al2O3-based mold flux for casting high-aluminum TRIP steels. Metall Mater Trans B, 2015, 46(1): 345 doi: 10.1007/s11663-014-0180-2
    [15] Lanyi M D, Rosa C J. Viscosity of casting fluxes used during continuous casting of steel. Metall Trans B, 1981, 12(2): 287 doi: 10.1007/BF02654462
    [16] Mizuno H, Esaka H, Shinozuka K, et al. Analysis of the crystallization of mold flux for continuous casting of steel. ISIJ Int, 2008, 48(3): 277 doi: 10.2355/isijinternational.48.277
    [17] Lu B X, Wang W L. Effects of fluorine and BaO on the crystallization behavior of lime–alumina-based mold flux for casting high-Al steels. Metall Mater Trans B, 2015, 46(2): 852 doi: 10.1007/s11663-014-0285-7
    [18] Long X, He S P, Xu J F, et al. Properties of high basicity mold fluxes for peritectic steel slab casting. J Iron Steel Res Int, 2012, 19(7): 39 doi: 10.1016/S1006-706X(12)60111-3
    [19] Nakada H, Nagata K. Crystallization of CaO–SiO2–TiO2 slag as a candidate for fluorine free mold flux. ISIJ Int, 2006, 46(3): 441 doi: 10.2355/isijinternational.46.441
    [20] Park J Y, Ryu J W, Sohn I. In-situ crystallization of highly volatile commercial mold flux using an isolated observation system in the confocal laser scanning microscope. Metall Mater Trans B, 2014, 45(4): 1186 doi: 10.1007/s11663-014-0087-y
    [21] Mutale C T, Cramb A W, Claudon T. Observation of the crystallization hehavior of a slag contain 46 wt pct CaO, 46 wt pct SiO2, 6 wt pct Al2O3, and 2 wt pct Na2O using the double hot thermocouple technique. Metall Mater Trans B, 2005, 36(3): 417 doi: 10.1007/s11663-005-0072-6
    [22] Zhu L L, Wang Q, Wang Q Q, et al. The relationship between crystallization and break temperature of mould flux. Ironmak Steelmak, 2019, 46(9): 865 doi: 10.1080/03019233.2018.1552773
    [23] Miodownik A P, Saunders N. Modelling of materials properties in duplex stainless steels. Mater Sci Technol, 2002, 18(8): 861 doi: 10.1179/026708302225004694
    [24] Lu B X, Chen K, Wang W L, et al. Effects of Li2O and Na2O on The crystallization behavior of Lime-Alumina-based mold flux for casting high-Al steels. Metall Mater Trans B, 2014, 45(4): 1496 doi: 10.1007/s11663-014-0063-6
    [25] Zhu L L, Wang Q, Wang Q Q, et al. In situ observation of crystallization of mold slag using a digital optical microscope in an infrared furnace. J Am Ceram Soc, 2018: jace.16085 doi: 10.1111/jace.16085
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  474
  • HTML全文瀏覽量:  164
  • PDF下載量:  56
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-07
  • 網絡出版日期:  2022-01-20
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回