<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

面向三維復雜焊縫的焊接機器人焊縫跟蹤方法

曹學鵬 張弓 楊根 吳月玉 陶浩 王傳璽

曹學鵬, 張弓, 楊根, 吳月玉, 陶浩, 王傳璽. 面向三維復雜焊縫的焊接機器人焊縫跟蹤方法[J]. 工程科學學報, 2023, 45(2): 310-317. doi: 10.13374/j.issn2095-9389.2021.09.02.001
引用本文: 曹學鵬, 張弓, 楊根, 吳月玉, 陶浩, 王傳璽. 面向三維復雜焊縫的焊接機器人焊縫跟蹤方法[J]. 工程科學學報, 2023, 45(2): 310-317. doi: 10.13374/j.issn2095-9389.2021.09.02.001
CAO Xue-peng, ZHANG Gong, YANG Gen, WU Yue-yu, TAO Hao, WANG Chuan-xi. Welding seam tracking method of welding robot oriented to three-dimensional complex welding seam[J]. Chinese Journal of Engineering, 2023, 45(2): 310-317. doi: 10.13374/j.issn2095-9389.2021.09.02.001
Citation: CAO Xue-peng, ZHANG Gong, YANG Gen, WU Yue-yu, TAO Hao, WANG Chuan-xi. Welding seam tracking method of welding robot oriented to three-dimensional complex welding seam[J]. Chinese Journal of Engineering, 2023, 45(2): 310-317. doi: 10.13374/j.issn2095-9389.2021.09.02.001

面向三維復雜焊縫的焊接機器人焊縫跟蹤方法

doi: 10.13374/j.issn2095-9389.2021.09.02.001
基金項目: 國家自然科學基金資助項目(62073092);廣東省自然科學基金資助項目(2021A1515012638);陜西省重點研發計劃資助項目(2021ZDLGY09-02);廣州市基礎研究計劃資助項目(202201011619, 202102080650, 202002030320)
詳細信息
    通訊作者:

    E-mail: gong.zhang@giat.ac.cn

  • 中圖分類號: TP242.2

Welding seam tracking method of welding robot oriented to three-dimensional complex welding seam

More Information
  • 摘要: 機器人焊接技術具有質量穩定、效率高等特點,為實現空間內的三維復雜焊縫跟蹤,提出基于分段掃描、濾波、特征點采集、路徑規劃的焊縫四步跟蹤方法。通過安裝于焊接機器人末端的激光傳感器,以分段掃描方式連續多段采集焊縫數據;為提高跟蹤精度,采用組合濾波的方式修正數據,有效降低焊件表面毛刺、數據失真和噪聲等影響;通過特征點采集與坐標系標定確定焊接點;最后結合焊接機器人路徑規劃獲得空間焊接路徑。對二維S型焊縫與三維復雜焊縫進行了實驗研究,結果表明提出的四步焊縫跟蹤方法可形成完整的焊接路徑,兩種焊件平均跟蹤誤差約為0.296 mm和0.292 mm,滿足機器人焊接跟蹤誤差低于0.5 mm的精度要求。表明所提出焊接跟蹤方法的有效性,可為復雜焊縫的高精度跟蹤和自動焊接研究提供有益參考。

     

  • 圖  1  焊縫跟蹤系統構成圖

    Figure  1.  Structure diagram of seam tracking system

    圖  2  焊縫跟蹤流程圖

    Figure  2.  Flow chart of welding seam tracking

    圖  3  分段掃描原理.(a)實物掃描圖; (b)原始數據圖像; (c) 點云圖; (d) 偽彩圖

    Figure  3.  Segmented scanning: (a) weldment scanning; (b) raw data; (c) point cloud; (d) pseudo-color picture

    圖  4  濾波效果. (a) Lowess濾波; (b) 限幅、高斯濾波

    Figure  4.  Filter effect: (a) Lowess filtering; (b) limiting, Gaussian filtering

    圖  5  特征點提取

    Figure  5.  Feature points extraction

    圖  6  機器人工作站坐標系

    Figure  6.  Robot workstation coordinate system

    圖  7  焊接實驗系統組成

    Figure  7.  Welding experimental system composition

    圖  8  實驗對象. (a) S型焊縫; (b) 三維復雜焊縫

    Figure  8.  Test subject: (a) type S; (b) three-dimensional (3D) curve

    圖  9  原始數據圖. (a) S型焊縫; (b) 三維復雜焊縫

    Figure  9.  Raw data graph: (a) type S; (b) 3D curve

    圖  10  焊接路徑. (a) S型焊縫; (b) S型焊縫點云圖; (c) 三維復雜焊縫; (d) 三維復雜焊縫點云圖

    Figure  10.  Welding path: (a) type S; (b) point cloud of type S; (c) 3D curve; (d) point cloud of 3D curve

    圖  11  誤差分析. (a) S型焊縫; (b) 三維復雜焊縫

    Figure  11.  Error analysis: (a) type S; (b) 3D curve

    表  1  誤差分析

    Table  1.   Error analysis

    Welding typeMean error/mmStandard deviation
    Type S0.2960.0779
    3D curve0.2920.1129
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Parameshwaran R, Tony Thomas A, Madhu Vishal V. Vision based self adaptive algorithm for 6 axis ABB industrial welding robot. IOP Conf Ser:Mater Sci Eng, 2021, 1123(1): 012038 doi: 10.1088/1757-899X/1123/1/012038
    [2] Wang B C, Hu S J, Sun L, et al. Intelligent welding system technologies: State-of-the-art review and perspectives. J Manuf Syst, 2020, 56: 373 doi: 10.1016/j.jmsy.2020.06.020
    [3] Chang D, Son D, Lee J, et al. A new seam-tracking algorithm through characteristic-point detection for a portable welding robot. Robotics Comput Integr Manuf, 2012, 28(1): 1 doi: 10.1016/j.rcim.2011.06.001
    [4] Zhao Z, Luo J, Wang Y Y, et al. Additive seam tracking technology based on laser vision. Int J Adv Manuf Technol, 2021, 116(1-2): 197 doi: 10.1007/s00170-021-07380-0
    [5] Banafian N, Fesharakifard R, Menhaj M B. Precise seam tracking in robotic welding by an improved image processing approach. Int J Adv Manuf Technol, 2021, 114(1-2): 251 doi: 10.1007/s00170-021-06782-4
    [6] Zhang G, Zhang Y H, Tuo S H, et al. A novel seam tracking technique with a four-step method and experimental investigation of robotic welding oriented to complex welding seam. Sensors, 2021, 21(9): 3067 doi: 10.3390/s21093067
    [7] Park J H, Moon H S. Advanced automatic welding system for offshore pipeline system with seam tracking function. Appl Sci, 2020, 10(1): 324 doi: 10.3390/app10010324
    [8] Zou Y B, Zhu M Q, Chen X Z. A robust detector for automated welding seam tracking system. J Dyn Syst Meas Control, 2021, 143(7): 071001 doi: 10.1115/1.4049547
    [9] Parameshwaran R, Maheswari C, Nithyavathy N, et al. LABVIEW based simulation on welding seam tracking using edge detection technique. IOP Conf Ser:Mater Sci Eng, 2021, 1055(1): 012026 doi: 10.1088/1757-899X/1055/1/012026
    [10] Lei T, Huang Y, Wang H, et al. Automatic weld seam tracking of tube-to-tubesheet TIG welding robot with multiple sensors. J Manuf Process, 2021, 63: 60 doi: 10.1016/j.jmapro.2020.03.047
    [11] Xue K X, Wang Z J, Shen J Q, et al. Robotic seam tracking system based on vision sensing and human-machine interaction for multi-pass MAG welding. J Manuf Process, 2021, 63: 48 doi: 10.1016/j.jmapro.2020.02.026
    [12] Hong B, Jia A T, Hong Y X, et al. Online extraction of pose information of 3D zigzag-line welding seams for welding seam tracking. Sensors, 2021, 21(2): 375 doi: 10.3390/s21020375
    [13] Inoue F, Derakhshandeh J, Lofrano M, et al. Fine-pitch bonding technology with surface-planarized solder micro-bump/polymer hybrid for 3D integration. Jpn J Appl Phys, 2021, 60(2): 026502 doi: 10.35848/1347-4065/abd69c
    [14] Shao W J, Huang Y, Zhang Y. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding. Opt Laser Technol, 2018, 99: 39 doi: 10.1016/j.optlastec.2017.09.037
    [15] Xiao R Q, Xu Y L, Hou Z, et al. An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system. J Intell Manuf, 2021: 1
    [16] Yi Z G, Pan N, Liu Y, et al. Study of laser displacement measurement data abnormal correction algorithm. Eng Comput, 2017, 34(1): 123 doi: 10.1108/EC-10-2015-0325
    [17] Zheng X G. GPNRBNN: A robot image edge detection method based on Gaussian positive-negative radial basis neural network. Sens Imaging, 2021, 22(1): 1 doi: 10.1007/s11220-020-00322-2
    [18] Aadhi A, Kovalev A V, Kues M, et al. Highly reconfigurable hybrid laser based on an integrated nonlinear waveguide. Opt Express, 2019, 27(18): 25251 doi: 10.1364/OE.27.025251
    [19] Xu J, Hoo J L, Dritsas S, et al. Hand-eye calibration for 2D laser profile scanners using straight edges of common objects. Robotics Comput Integr Manuf, 2022, 73: 102221 doi: 10.1016/j.rcim.2021.102221
    [20] Li M Y, Du Z J, Ma X X, et al. A robot hand-eye calibration method of line laser sensor based on 3D reconstruction. Robotics Comput Integr Manuf, 2021, 71: 102136 doi: 10.1016/j.rcim.2021.102136
    [21] Liu Y, Shi L, Tian X C. Weld seam fitting and welding torch trajectory planning based on NURBS in intersecting curve welding. Int J Adv Manuf Technol, 2018, 95(5-8): 2457 doi: 10.1007/s00170-017-1374-y
    [22] Cakir M, Deniz C. High precise and zero-cost solution for fully automatic industrial robot TCP calibration. Ind Robot Int J Robotics Res Appl, 2019, 46(5): 650
    [23] Zhang K, Jiang H T, Meng Q, et al. Effect of the welding speed on the microstructure and the mechanical properties of robotic friction stir welded AA7B04 aluminum alloy. Chin J Eng, 2018, 40(12): 1525

    張坤, 江海濤, 孟強, 等. 焊接速度對機器人攪拌摩擦焊AA7B04鋁合金接頭組織和力學性能的影響. 工程科學學報, 2018, 40(12):1525
    [24] Cao X Y, Luo K L, Lu Y H, et al. Effect of welding speed on the microstructure and hardness distribution of laser beam welding joints. Chin J Eng, 2015, 37(6): 714

    曹鑫源, 羅奎林, 陸永浩, 等. 激光焊接速度對焊縫組織和硬度分布的影響. 工程科學學報, 2015, 37(6):714
    [25] Zhang S B, Zhang Y M, Kovacevic R. Noncontact ultrasonic sensing for seam tracking in arc welding processes. J Manuf Sci Eng, 1998, 120(3): .600 doi: 10.1115/1.2830164
  • 加載中
圖(11) / 表(1)
計量
  • 文章訪問數:  753
  • HTML全文瀏覽量:  258
  • PDF下載量:  99
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-09-02
  • 網絡出版日期:  2021-10-27
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回