<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于離散裂縫模型的頁巖油儲層壓裂滲吸數值模擬

徐榮利 郭天魁 曲占慶 陳銘 覃建華 牟善波 陳喚鵬 張躍龍

徐榮利, 郭天魁, 曲占慶, 陳銘, 覃建華, 牟善波, 陳喚鵬, 張躍龍. 基于離散裂縫模型的頁巖油儲層壓裂滲吸數值模擬[J]. 工程科學學報, 2022, 44(3): 451-463. doi: 10.13374/j.issn2095-9389.2021.08.30.007
引用本文: 徐榮利, 郭天魁, 曲占慶, 陳銘, 覃建華, 牟善波, 陳喚鵬, 張躍龍. 基于離散裂縫模型的頁巖油儲層壓裂滲吸數值模擬[J]. 工程科學學報, 2022, 44(3): 451-463. doi: 10.13374/j.issn2095-9389.2021.08.30.007
XU Rong-li, GUO Tian-kui, QU Zhan-qing, CHEN Ming, QIN Jian-hua, MOU Shan-bo, CHEN Huan-peng, ZHANG Yue-long. Numerical simulation of fractured imbibition in a shale oil reservoir based on the discrete fracture model[J]. Chinese Journal of Engineering, 2022, 44(3): 451-463. doi: 10.13374/j.issn2095-9389.2021.08.30.007
Citation: XU Rong-li, GUO Tian-kui, QU Zhan-qing, CHEN Ming, QIN Jian-hua, MOU Shan-bo, CHEN Huan-peng, ZHANG Yue-long. Numerical simulation of fractured imbibition in a shale oil reservoir based on the discrete fracture model[J]. Chinese Journal of Engineering, 2022, 44(3): 451-463. doi: 10.13374/j.issn2095-9389.2021.08.30.007

基于離散裂縫模型的頁巖油儲層壓裂滲吸數值模擬

doi: 10.13374/j.issn2095-9389.2021.08.30.007
基金項目: 國家重點研發計劃資助項目(2020YFA0711804);山東省優秀青年基金資助項目(ZR2020YQ36)
詳細信息
    通訊作者:

    E-mail: guotiankui@126.com

  • 中圖分類號: TE357

Numerical simulation of fractured imbibition in a shale oil reservoir based on the discrete fracture model

More Information
  • 摘要: 對于含黏土礦物較高的頁巖油儲層,地層水的礦化度可高達4.786×103 mol·m?3,壓裂過程中與注入的低礦化度壓裂液形成的滲透壓作用顯著。為探究滲透壓對滲吸的影響作用,建立了綜合考慮滲透壓和毛管力滲吸作用的油水兩相二維離散裂縫網絡模型,開展了頁巖油儲層壓裂液泵注和關井階段滲透壓、毛管力、關井時間、鹽濃度、膜效率、分支縫面積占比等對滲吸的影響規律研究。結果表明:①濾失主要由壓力差、毛管力和滲透壓3種機制驅動,其中壓力差是濾失的關鍵控制機制;②關井時間對壓裂液的滲吸作用影響較大,關井50 d時,前15 d滲吸量可達到總滲吸量的80%,且關井壓力擴散會波及到兩側壓裂段;③與壓力擴散相比,滲透壓達到平衡的時間較長,對于地層水礦化度為4.786×103 mol·m?3的情況,裂縫附近的礦化度達到600 mol·m?3左右所需關井時間為50 d;④由于壓力差是滲吸主要驅動力,頁巖膜效率對滲透壓力擴散影響微弱,頁巖膜效率30%與5%相比滲吸量僅增加4%;⑤對于密切割壓裂,關井后,含水飽和度受小間距水力裂縫控制,分支縫對滲吸含水飽和度的影響有限。

     

  • 圖  1  離散裂縫示意圖

    Figure  1.  Discrete fractures

    圖  2  儲層壓力隨時間變化圖

    Figure  2.  Reservoir pressure varies with time

    圖  3  NaCl濃度隨時間變化圖

    Figure  3.  NaCl concentration varies with time

    圖  4  物理模型(a)及網格剖分(b)

    Figure  4.  Physical model (a) and mesh division (b)

    圖  5  含水飽和度剖面對比。(a)實驗結果[32];(b)多尺度有限元模擬結果[31];(c)本文模擬結果

    Figure  5.  Water saturation profile comparison: (a) experimental results[32]; (b) multiscale finite element simulation results[31]; (c) simulation results in this paper

    圖  6  水平井多簇密切割分段壓裂示意圖

    Figure  6.  Horizontal well-staged fracturing

    圖  7  復雜裂縫幾何模型圖

    Figure  7.  Complex fracture model

    圖  8  壓裂施工注入過程中的飽和度分布圖

    Figure  8.  Saturation during injection in a fracturing operation

    圖  9  不關井情況下的飽和度,壓力,鹽濃度分布

    Figure  9.  Saturation, pressure, and salt concentration without shut-in

    圖  10  關井50 d后的飽和度,壓力,鹽濃度分布

    Figure  10.  Saturation, pressure, and salt concentration distribution after 50 days of shut-in

    圖  11  不同關井時間下的飽和度

    Figure  11.  Saturation at various shut-in times

    圖  12  不同關井時間下的鹽濃度圖

    Figure  12.  Salt concentration at various shut-in times

    圖  13  不同關井時間下的壓力圖

    Figure  13.  Pressure at various shut-in times

    圖  14  不同關井時間下的飽和度圖

    Figure  14.  Saturation at various shut-in times

    圖  15  不同礦化度下的鹽濃度分布。(a)泵注后;(b)關井后

    Figure  15.  Distribution of salt concentration under various salinity levels: (a) after pump injection; (b) after the shut-in

    圖  16  關井后不同礦化度下的飽和度分布

    Figure  16.  Distribution of saturation under various salinity levels

    圖  17  不同膜效率下的飽和度分布

    Figure  17.  Saturation distribution at various membrane efficiencies

    圖  18  不同膜效率下的鹽濃度分布

    Figure  18.  Salt concentration at various membrane efficiencies

    圖  19  不同分支縫面積占比的剖面圖。(a)含水飽和度;(b)鹽濃度

    Figure  19.  Sectional views of various branch joint area proportions: (a) water saturation; (b) salt concentration

    表  1  模型參數

    Table  1.   Simulation parameters

    ParameterValueParameterValue
    Reservoir area/(m×m)200 × 500Hydraulic fracture spacing/m15
    Initial reservoir pressure/MPa30Reservoir temperature/℃90
    Rock compressibility/Pa?12 × 10?9Initial water saturation/dimensionless0.2
    Water compressibility/Pa?15 × 10?9Oil compressibility/Pa?12×10?9
    Permeability of matrix/mD0.01Permeability of hydraulic fracture/D10
    Porosity of matrix0.1Porosity of hydraulic fracture0.25
    Water density/(kg·m?3)1000Oil density/(kg·m?3)800
    Water viscosity/(mPa·s)1Oil viscosity/(mPa·s)5
    Hydraulic fracture width/mm5Pumping rate/(m3·min?1)15
    Residual oil saturation0.05residual water saturation0.2
    Initial reservoir salt concentration /(mol·m?3)2.565 × 103 [15]Fracturing fluid salt concentration/(mol·m?3)17.1 [15]
    Diffusion coefficient/(m2·s?1)1 × 10?9 [14]Osmotic efficiency10% [15]
    Secondary fracture permeability/D1Secondary fracture porosity0.15
    Unconnected natural fracture permeability/mD10Unconnected natural fracture porosity5 × 10?4
    Hydraulic fracture half-length/m200Secondary fracture length/m20–70
    Secondary fracture aperture /mm2Unconnected natural fracture aperture/mm0.5
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Xu Y, Lei Q, Chen M, et al. Progress and development of volume stimulation techniques. Petroleum Explor Dev, 2018, 45(5): 874

    胥云, 雷群, 陳銘, 等. 體積改造技術理論研究進展與發展方向. 石油勘探與開發, 2018, 45(5):874
    [2] Denney D. Thirty years of gas-shale fracturing: What have we learned? J Petroleum Technol, 2010, 62(11): 88
    [3] Makhanov K, Dehghanpour H, Kuru E. An experimental study of spontaneous imbibition in Horn River shales // SPE Canadian Unconventional Resources Conference. Alberta, 2012
    [4] Dehghanpour H, Zubair H A, Chhabra A, et al. Liquid intake of organic shales. Energy Fuels, 2012, 26(9): 5750 doi: 10.1021/ef3009794
    [5] Pagels M, Hinkel J J, Willberg D M. Measuring capillary pressure tells more than pretty pictures // SPE International Symposium and Exhibition on Formation Damage Control. Louisiana, 2012: SPE-151729-MS
    [6] Cheng Y. Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas-shale reservoirs. J Can Pet Technol, 2012, 51(2): 143
    [7] Wang M Y, Leung J Y. Numerical investigation of coupling multiphase flow and geomechanical effects on water loss during hydraulic-fracturing flowback operation. SPE Reserv Eval Eng, 2016, 19(3): 520 doi: 10.2118/178618-PA
    [8] Meng M M, Ge H K, Ji W M, et al. Investigation on the variation of shale permeability with spontaneous imbibition time: Sandstones and volcanic rocks as comparative study. J Nat Gas Sci Eng, 2015, 27: 1546 doi: 10.1016/j.jngse.2015.10.019
    [9] Wang S, Javadpour F, Feng Q H. Confinement correction to mercury intrusion capillary pressure of shale nanopores. Sci Rep, 2016, 6: 20160 doi: 10.1038/srep20160
    [10] Zhang T, Li X F, Yang L F, et al. Effects of shut-in timing on flowback rate and productivity of shale gas wells. Nat Gas Ind, 2017, 37(8): 48 doi: 10.3787/j.issn.1000-0976.2017.08.006

    張濤, 李相方, 楊立峰, 等. 關井時機對頁巖氣井返排率和產能的影響. 天然氣工業, 2017, 37(8):48 doi: 10.3787/j.issn.1000-0976.2017.08.006
    [11] Dehghanpour H, Lan Q, Saeed Y, et al. Spontaneous imbibition of brine and oil in gas shales: Effect of water adsorption and resulting microfractures. Energy Fuels, 2013, 27(6): 3039 doi: 10.1021/ef4002814
    [12] Yang L. Fracturing Fluid Imbibition into Gas Shale and Its Impact on Engineering [Dissertation]. Beijing: China University of Petroleum (Beijing), 2016

    楊柳. 壓裂液在頁巖儲層中的吸收及其對工程的影響[學位論文]. 北京: 中國石油大學(北京), 2016
    [13] Zhou Z. The Impact of Capillary Imbibition and Osmosis During Hydraulic Fracturing of Shale Formations. Colorado: ProQuest Dissertations Publishing, 2015
    [14] Fakcharoenphol P, Torcuk M, Bertoncello A, et al. Managing shut-in time to enhance gas flow rate in hydraulic fractured shale reservoirs: a simulation study // SPE Annual Technical Conference and Exhibition. New Orleans, 2013: SPE-166098-MS
    [15] Fakcharoenphol P, Kurtoglu B, Kazemi H, et al. The effect of osmotic pressure on improve oil recovery from fractured shale formations // SPE Unconventional Resources Conference. The Woodlands, 2014: SPE-168998-MS
    [16] Wang F, Pan Z Q. Numerical simulation of chemical potential dominated fracturing fluid flowback in hydraulically fractured shale gas reservoirs. Petroleum Explor Dev, 2016, 43(6): 971

    王飛, 潘子晴. 化學勢差驅動下的頁巖儲集層壓裂液返排數值模擬. 石油勘探與開發, 2016, 43(6):971
    [17] Almulhim A, Alharthy N, Tutuncu A N, et al. Impact of imbibition mechanism on flowback behavior: a numerical study // Abu Dhabi International Petroleum Exhibition and Conference. Abu Dhabi, 2014: SPE-171799-MS
    [18] Wang J L, Liu Y Z, Chen M Q, et al. Experimental study on dynamic imbibition mechanism of low permeability reservoirs. Petroleum Explor Dev, 2009, 36(1): 86 doi: 10.3321/j.issn:1000-0747.2009.01.011

    王家祿, 劉玉章, 陳茂謙, 等. 低滲透油藏裂縫動態滲吸機理實驗研究. 石油勘探與開發, 2009, 36(1):86 doi: 10.3321/j.issn:1000-0747.2009.01.011
    [19] Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103

    朱維耀, 岳明, 劉昀楓, 等. 中國致密油藏開發理論研究進展. 工程科學學報, 2019, 41(9):1103
    [20] Zhang T, Li X F, Li J, et al. Numerical investigation of the well shut-in and fracture uncertainty on fluid-loss and production performance in gas-shale reservoirs. J Nat Gas Sci Eng, 2017, 46: 421 doi: 10.1016/j.jngse.2017.08.024
    [21] Wang F, Pan Z Q, Zhang Y C, et al. Simulation of coupled hydro-mechanical-chemical phenomena in hydraulically fractured gas shale during fracturing-fluid flowback. J Petroleum Sci Eng, 2018, 163: 16 doi: 10.1016/j.petrol.2017.12.029
    [22] Wang X H, Li L, Wang M, et al. A discrete fracture model for two-phase flow involving the capillary pressure discontinuities in fractured porous media. Adv Water Resour, 2020, 142: 103607 doi: 10.1016/j.advwatres.2020.103607
    [23] Li Z K, Cao W D, Liu Z F, et al. The advanced embedded discrete fracture model considering the capillary pressure difference. J Por Media, 2020, 23(10): 969 doi: 10.1615/JPorMedia.2020034976
    [24] Zhang K N, Woodbury A D. A Krylov finite element approach for multi-species contaminant transport in discretely fractured porous media. Adv Water Resour, 2002, 25(7): 705 doi: 10.1016/S0309-1708(02)00084-2
    [25] Takeda M, Hiratsuka T, Ito K, et al. Development and application of chemical osmosis simulator based on TOUGH2 // 2012 TOUGH2 Symposium of Lawrence Berkeley National Laboratory Berkeley. California, 2012: 1
    [26] Fritz S J. Ideality of clay membranes in osmotic processes: A review. Clays Clay Miner, 1986, 34(2): 214 doi: 10.1346/CCMN.1986.0340212
    [27] Guo T K, Wang X Z, Li Z, et al. Numerical simulation study on fracture propagation of zipper and synchronous fracturing in hydrogen energy development. Int J Hydrog Energy, 2019, 44(11): 5270 doi: 10.1016/j.ijhydene.2018.08.072
    [28] Zhu W Y, Ma D X, Zhu H Y, et al. Stress sensitivity of shale gas reservoir and its influence on productivity. Nat Gas Geosci, 2016, 27(5): 892 doi: 10.11764/j.issn.1672-1926.2016.05.0892

    朱維耀, 馬東旭, 朱華銀, 等. 頁巖儲層應力敏感性及其對產能影響. 天然氣地球科學, 2016, 27(5):892 doi: 10.11764/j.issn.1672-1926.2016.05.0892
    [29] Ghorayeb K, Firoozabadi A. Numerical study of natural convection and diffusion in fractured porous media. SPE J, 2000, 5(1): 12 doi: 10.2118/51347-PA
    [30] Ma T R, Xu H, Guo C B, et al. A discrete fracture modeling approach for analysis of coalbed methane and water flow in a fractured coal reservoir. Geofluids, 2020, 2020: 1
    [31] Zhang Q F, Huang Z Q, Yao J, et al. Two-phase numerical simulation of discrete fracture model based on multiscale mixed finite element method. Chin Sci Bull, 2017, 62(13): 1392 doi: 10.1360/N972016-00584

    張慶福, 黃朝琴, 姚軍, 等. 基于多尺度混合有限元的離散裂縫兩相滲流數值模擬. 科學通報, 2017, 62(13):1392 doi: 10.1360/N972016-00584
    [32] Huang Z Q, Gao B, Wang Y Y, et al. Two-phase flow simulation of discrete fracture model using a novel mimetic finite difference method. J China Univ Pet, 2014, 38(6): 97

    黃朝琴, 高博, 王月英, 等. 基于模擬有限差分法的離散裂縫模型兩相流動模擬. 中國石油大學學報(自然科學版), 2014, 38(6):97
    [33] Zheng M, Li J Z, Wu X Z, et al. Physical modeling of oil charging in tight reservoirs: A case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China. Pet Explor Dev, 2016, 43(2): 219

    鄭民, 李建忠, 吳曉智, 等. 致密儲集層原油充注物理模擬——以準噶爾盆地吉木薩爾凹陷二疊系蘆草溝組為例. 石油勘探與開發, 2016, 43(2):219
    [34] Sun B, Liu L F, Ding J H. Main geologic factors controlling the productivity of horizontal wells in tight oil reservoirs. Special Oil Gas Reserv, 2017, 24(2): 115 doi: 10.3969/j.issn.1006-6535.2017.02.023

    孫兵, 劉立峰, 丁江輝. 致密油水平井產能主控地質因素研究. 特種油氣藏, 2017, 24(2):115 doi: 10.3969/j.issn.1006-6535.2017.02.023
    [35] Schlemmer R, Friedheim J E, Growcock F B, et al. Chemical osmosis, shale, and drilling fluids. SPE Drill Complet, 2003, 18(4): 318 doi: 10.2118/86912-PA
  • 加載中
圖(19) / 表(1)
計量
  • 文章訪問數:  1172
  • HTML全文瀏覽量:  375
  • PDF下載量:  113
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-30
  • 網絡出版日期:  2021-10-08
  • 刊出日期:  2022-01-08

目錄

    /

    返回文章
    返回