-
摘要: 負載貴金屬的γ-Al2O3催化劑具有優異的有機物催化降解能力,被廣泛用于處理固定源和移動源排放產生的廢氣,高溫燒結是導致催化劑失活的重要因素之一,如何提高催化劑抗燒結性能備受關注。本文介紹了負載貴金屬的γ-Al2O3催化劑高溫燒結產生的原因和機理,分析表明高溫致使貴金屬發生Ostwald熟化和液化團聚以及γ-Al2O3晶相轉變降低催化劑比表面積,降低了催化劑活性。在此基礎上從貴金屬、載體以及載體與貴金屬間作用三個方面回顧和整理了提高催化劑高溫熱穩定性的方法,并重點闡述了貴金屬修飾、載體改性以及改變金屬與載體相互作用來達到提高熱穩定性的方法。此外,還介紹了其他如限域法、晶面控制等實現催化劑穩定性提高的方法,為催化劑的設計提供了新思路。最后,對γ-Al2O3基氧化催化劑的未來發展方向進行了展望。Abstract: γ-Al2O3 is an enormously important industrial material, especially used as catalysts, catalyst supports, and adsorbents due to its attractive structural, surface, and dielectric properties. Particularly, catalytic reduction of pollutants such as nitric oxide, as well as oxidation of hydrocarbons, is accomplished with precious metals such as platinum or palladium dispersed on the γ-Al2O3 surface. γ-Al2O3 loaded with precious metals has an excellent catalytic degradation ability of organic matter and is widely used to treat exhaust gas from stationary and mobile sources. High-temperature sintering is a major cause of catalyst deactivation. For example, at higher treatment temperatures (>800 ℃), γ-Al2O3 transforms into δ-Al2O3 and θ-Al2O3, decreasing in surface area and a change in dielectric properties. Additionally, in the reaction environment, supported metal nanoparticles grow in size, leading to the loss of catalyst activity. How to improve the anti-sintering performance of catalysts is a particular concern of this field. This review analyzes the reason and mechanism of the high-temperature sintering of γ-Al2O3 loaded with precious metal. A high temperature leads to Ostwald ripening and particle migration, coalescence of precious metals, and phase transformation of γ-Al2O3, reducing the specific surface area and activity of the catalyst. On this basis, the approaches for improving the high-temperature thermal stability of catalysts were reviewed and sorted out from three aspects, namely, precious metals, supports, and the interaction between them. First, the focus is on precious metal modification, carrier modification, and changing the interaction between them to improve thermal stability. Additionally, other methods, such as the confinement method and crystal plane control, are thoroughly examined and explained. These strategies provide new insights into catalyst design. Finally, the developmental trends of γ-Al2O3-based oxidation catalysts are broadly forecasted.
-
Key words:
- air pollution /
- catalysis /
- sintering /
- alumina /
- precious metal
-
圖 3 貴金屬顆粒包覆SiO2示意圖及性能對比.(a)Pt–Pd合金被二氧化硅包覆形成核殼結構; (b) 核殼結構提高甲烷催化性能[29]
Figure 3. Schematic showing the encapsulated PdPt@SiO2 catalyst and its hydrothermal stability for lean CH4 combustion: (a) Pt–Pd alloy is coated with silica to form a core-shell structure; (b) core-shell structure improves the catalytic performance of methane[29]
圖 8 三種不同結構催化劑在10 ℃·min–1的升降溫過程中甲烷催化氧化效率與溫度關系.(a) Pd@CeO2/疏水改性的γ-Al2O3;(b)Pd/CeO2;(c)Pd/CeO2/Al2O3[52]
Figure 8. Light-off curves of CH4 conversion against the temperature for the three catalysts formulations used at heating and cooling of 10 ℃·min–1: (a) Pd@CeO2/H-Al2O3 core-shell catalyst; (b) Pd/CeO2-IWI; (c) Pd/CeO2/Al2O3-IMP[52]
表 1 貴金屬單質特征溫度
Table 1. Characteristic temperature of precious metal
Precious metal Tm/℃ 0.3Tm/℃ 0.5Tm/℃ Ru 2250 484 988 Rh 1964 398 846 Pd 2970 700 1349 Ir 2450 544 1088 Pt 1772 340 750 Au 1064 128 396 表 2 負載貴金屬γ-Al2O3催化劑的不同抗燒結策略
Table 2. The sintering resistance strategy of γ-Al2O3 loaded with precious metals
The sintering resistance strategy Advantages Disadvantages Modification of γ-Al2O3 Introducing anion PO43– Improvement the stability of γ-Al2O3 Lowering catalytic activity, unstable
bulk phaseIntroducing cation Mg2+, La3+
et alHigher calcination temperature (>900 ℃),
unstable bulk phaseCrystal phase transition Improvement the stability of support
bulk phaseHigh calcination temperature (1200 ℃),
much lower surface areaModification of
precious metalsShell coating Improvement the stability of
precious metalsComplex preparation process Improving Tm Lowering cost, tuning electrons
of d oribitsSmall increase in thermal stability Space confinement Micro/mesoporous confinement Retarding agglomeration rate
of precious metalSmall increase in thermal stability Introducing metal into the crystal lattice Only suitable for perovskite structure Adjustment of SMSI Increasing unsaturated coordination Al3+ Prevent precious metal
nanoparticles migrationDecrease the stability of support Reconfiguring the support interface Improvement the stability of
catalysts and its activityComplex preparation process www.77susu.com -
參考文獻
[1] Liu Y W, Lin X J. Co-processing scheme of waste gas discharged from coal-to-natural gas. Mod Chem Res, 2017(12): 66 doi: 10.3969/j.issn.1672-8114.2017.12.041劉玉煒, 林興軍. 煤制天然氣排放廢氣協同處理方案. 當代化工研究, 2017(12):66 doi: 10.3969/j.issn.1672-8114.2017.12.041 [2] Jiang C X, Sun X H. VOCs treatment of CO2 tail gas from rectisol unit for crushed coal pressurized gasifier. Coal Chem Ind, 2018, 46(6): 1 doi: 10.3969/j.issn.1005-9598.2018.06.001姜成旭, 孫曉紅. 碎煤加壓氣化爐配套低溫甲醇洗裝置CO2尾氣VOCs治理. 煤化工, 2018, 46(6):1 doi: 10.3969/j.issn.1005-9598.2018.06.001 [3] Wang W Y, Zhao P P, Jin L Y, et al. Recent advances in catalysts for volatile organic compounds combustion. Chem Ind Eng Prog, 2020, 39(Suppl 2): 185王煒月, 趙培培, 金凌云, 等. 揮發性有機物燃燒催化劑的研究進展. 化工進展, 2020, 39(增刊2): 185 [4] Xu S C, Jaegers N R, Hu W D, et al. High-field one-dimensional and two-dimensional 27Al magic-angle spinning nuclear magnetic resonance study of θ-, δ-, and γ-Al2O3 dominated aluminum oxides: Toward understanding the Al sites in γ-Al2O3. ACS Omega, 2021, 6(5): 4090 doi: 10.1021/acsomega.0c06163 [5] Hansen T W, Delariva A T, Challa S R, et al. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Acc Chem Res, 2013, 46(8): 1720 [6] Almohamadi H, Alamoudi M A, Smith K J. Washcoat overlayer for improved activity and stability of natural gas vehicle monolith catalysts operating in the presence of H2O and SO2. Ind Eng Chem Res, 2021, 60(9): 3572 doi: 10.1021/acs.iecr.1c00068 [7] Ye R L, Fang Y H. Physical Chemistry of Inorganic Materials. Beijing: China Architecture & Building Press, 1986葉瑞倫, 方永漢. 無機材料物理化學. 北京: 中國建筑工業出版社, 1986 [8] Zhang J J, Sun J, Li J G, et al. Study on deactivation of nanosized Au/CeO2 catalysts in storage. J Funct Mater, 2017, 48(11): 11021張靜靜, 孫杰, 李吉剛, 等. Au/CeO2催化劑儲存失活性研究. 功能材料, 2017, 48(11):11021 [9] Zheng T T, He J J, Wu L G, et al. Deactivation of three-way catalyst for automobile exhaust// Proceedings of the 8th National Industrial Catalysis Technology and Application Annual Conference. Xi’an, 2011: 6鄭婷婷, 何俊俊, 吳樂剛, 等. 汽車尾氣三效催化劑的失活//第八屆全國工業催化技術及應用年會. 西安, 2011:6 [10] Kunwar D, Carrillo C, Xiong H F, et al. Investigating anomalous growth of platinum particles during accelerated aging of diesel oxidation catalysts. Appl Catal B Environ, 2020, 266: 118598 doi: 10.1016/j.apcatb.2020.118598 [11] Jang B F, Zhou N, Han W F, et al. Deactivation and regeneration of Pd/AC catalyst in hydrodechlorination reaction. Chem Prod Technol, 2019, 25(3): 8 doi: 10.3969/j.issn.1006-6829.2019.03.002蔣斌峰, 周楠, 韓文鋒, 等. Pd/AC催化劑在加氫脫氯反應中的失活原因及再生. 化工生產與技術, 2019, 25(3):8 doi: 10.3969/j.issn.1006-6829.2019.03.002 [12] Xu X, Yu L, Han J Y. Deactivation and regeneration mechanism of Pd-based supported catalysts for ventilation air methane. China Coalbed Methane, 2019, 16(3): 3徐鑫, 于雷, 韓甲業. Pd基負載型通風瓦斯燃燒催化劑的失活和再生機理研究. 中國煤層氣, 2019, 16(3):3 [13] Fan C J, Li X, Xu X Q, et al. Effects of starting powders on sinterability of Al2O3–ZrO2 nanoceramics. J Chongqing Uni, 2019, 42(12): 67 doi: 10.11835/j.issn.1000-582X.2019.12.008范長頡, 李鑫, 許西慶, 等. 初始粉體狀態對氧化鋁/氧化鋯納米陶瓷燒結性能的影響. 重慶大學學報, 2019, 42(12):67 doi: 10.11835/j.issn.1000-582X.2019.12.008 [14] Paglia G, Buckley C E, Rohl A L, et al. Boehmite derived γ-alumina system. 1. structural evolution with temperature, with the identification and structural determination of a new transition phase, γ'-alumina. Chem Mater, 2004, 16(2): 220 [15] Seong H, Choi S, Matusik K E, et al. 3D pore analysis of gasoline particulate filters using X-ray tomography: impact of coating and ash loading. J Mater Sci, 2019, 54(8): 6053 doi: 10.1007/s10853-018-03310-w [16] Seong H, Choi S, Lee S, et al. Deactivation of three-way catalysts coated within gasoline particulate filters by engine-oil-derived chemicals. Ind Eng Chem Res, 2019, 58(25): 10724 doi: 10.1021/acs.iecr.9b00342 [17] Schedlbauer T, Lott P, Casapu M, et al. Impact of the support on the catalytic performance, inhibition effects and SO2 poisoning resistance of Pt-based formaldehyde oxidation catalysts. Top Catal, 2019, 62(1): 198 [18] Wilburn M S, Epling W S. Formation and decomposition of sulfite and sulfate species on Pt/Pd catalysts: An SO2 oxidation and sulfur exposure study. ACS Catal, 2019, 9(1): 640 doi: 10.1021/acscatal.8b03529 [19] Wilburn M S, Epling W S. SO2 adsorption and desorption characteristics of Pd and Pt catalysts: Precious metal crystallite size dependence. Appl Catal A Gen, 2017, 534: 85 doi: 10.1016/j.apcata.2017.01.015 [20] Liu Q, Lu W X, Liu J, et al. Research progress in catalytic combustion technologies of halogenated volatile organic compounds (VOCs). Chem Fertil Des, 2020, 58(2): 10 doi: 10.3969/j.issn.1004-8901.2020.02.003劉強, 盧文新, 劉佳, 等. 鹵代揮發性有機物催化燃燒技術研究進展. 化肥設計, 2020, 58(2):10 doi: 10.3969/j.issn.1004-8901.2020.02.003 [21] Wu Q Q, Yan J R, Jiang M X, et al. Phosphate-assisted synthesis of ultrathin and thermally stable alumina nanosheets as robust Pd support for catalytic combustion of propane. Appl Catal B Environ, 2021, 286(5): 119949 [22] Chen J J, Wu Y, Hu W, et al. Insights into the role of Pt on Pd catalyst stabilized by magnesia–alumina spinel on gama-alumina for lean methane combustion: Enhancement of hydrothermal stability. Mol Catal, 2020, 496: 111185 doi: 10.1016/j.mcat.2020.111185 [23] Stoyanovskii V O, Vedyagin A A, Volodin A M, et al. Optical spectroscopy methods in the estimation of the thermal stability of bimetallic Pd-Rh/Al2O3 three-way catalysts. Top Catal, 2019, 62(1): 296 [24] Voorhoeve R J H, Johnson D W, Remeika J P, et al. Perovskite oxides: Materials science in catalysis. Science, 1977, 195(4281): 827 doi: 10.1126/science.195.4281.827 [25] Amrute A P, ?odziana Z, Schreyer H, et al. High-surface-area corundum by mechanochemically induced phase transformation of boehmite. Science, 2019, 366(6464): 485 doi: 10.1126/science.aaw9377 [26] Li J G, Pu S X, Cao W B, et al. Comment on “High-surface-area corundum by mechanochemically induced phase transformation of boehmite”. Science, 2020, 368(6494): 1 [27] Yin P, Jiang X H, Zou M, et al. Catalytic effect of SiO2/Co3O4 core-shell catalyst on thermal decomposition of AP. Chin J Inorg Chem, 2014, 30(1): 185尹萍, 江曉紅, 鄒敏, 等. SiO2/Co3O4核殼催化劑對AP熱分解的催化性能研究. 無機化學學報, 2014, 30(1):185 [28] Wang D R, Wang Z D, Zhang B, et al. Preparation and catalytic performance of noble metal loaded core-shell structured catalyst. Chem React Eng Technol, 2017, 33(4): 289王達銳, 王振東, 張斌, 等. 貴金屬負載型核殼結構催化劑的制備及其催化性能影響. 化學反應工程與工藝, 2017, 33(4):289 [29] Habibi A H, Hayes R E, Semagina N. Evaluation of hydrothermal stability of encapsulated PdPt@SiO2 catalyst for lean CH4 combustion. Appl Catal A Gen, 2018, 556: 129 doi: 10.1016/j.apcata.2018.02.034 [30] Zou X L, Ma Z L, Deng J L, et al. Core-shell PdO@SiO2/Al2O3 with sinter-resistance and water-tolerance promoting catalytic methane combustion. Chem Eng J, 2020, 396: 125275 doi: 10.1016/j.cej.2020.125275 [31] Zhang Z S, Sun L W, Hu X F, et al. Anti-sintering Pd@silicalite-1 for methane combustion: Effects of the moisture and SO2. Appl Surf Sci, 2019, 494: 1044 doi: 10.1016/j.apsusc.2019.07.252 [32] Ozawa M, Misaki M, Iwakawa M, et al. Low content Pt-doped CeO2 and core-shell type CeO2/ZrO2 model catalysts; microstructure, TPR and three way catalytic activities. Catal Today, 2019, 332: 251 doi: 10.1016/j.cattod.2018.08.015 [33] Li W J, Wey M Y. Core-shell design and well-dispersed Pd particles for three-way catalysis: Effect of halloysite nanotubes functionalized with Schiff base. Sci Total Environ, 2019, 675: 397 doi: 10.1016/j.scitotenv.2019.04.243 [34] Alcock C B, Hooper G W. Thermodynamics of the gaseous oxides of the platinum-group metals. Proc R Soc Lond A, 1960, 254(1279): 551 doi: 10.1098/rspa.1960.0040 [35] Xiong H F, Peterson E, Qi G, et al. Trapping mobile Pt species by PdO in diesel oxidation catalysts: Smaller is better. Catal Today, 2016, 272: 80 doi: 10.1016/j.cattod.2016.01.022 [36] Carrillo C, DeLaRiva A, Xiong H F, et al. Regenerative trapping: How Pd improves the durability of Pt diesel oxidation catalysts. Appl Catal B Environ, 2017, 218: 581 doi: 10.1016/j.apcatb.2017.06.085 [37] Ghosh A, Pham H, Higgins J, et al. Restricting the growth of Pt nanoparticles through confinement in ordered nanoporous structures. Appl Catal A Gen, 2020, 607: 117858 doi: 10.1016/j.apcata.2020.117858 [38] Wang W Y, Zhou W, Li W, et al. In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability. Appl Catal B Environ, 2020, 276: 119142 doi: 10.1016/j.apcatb.2020.119142 [39] Ament K, Wagner D R, G?tsch T, et al. Enhancing the catalytic activity of palladium nanoparticles via sandwich-like confinement by thin titanate nanosheets. ACS Catal, 2021, 11(5): 2754 doi: 10.1021/acscatal.1c00031 [40] Lu J L, Fu B S, Kung M C, et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science, 2012, 335(6073): 1205 doi: 10.1126/science.1212906 [41] Kothari M, Jeon Y, Miller D N, et al. Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanoparticles. Nat Chem, 2021, 13(6): 677 [42] Jones J, Xiong H F, DeLaRiva A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353(6295): 150 doi: 10.1126/science.aaf8800 [43] Lin J M, Cen J, Li Z J, et al. Development on deactivation mechanism of Ni-based reforming catalysts. Chem Ind Eng Prog, 2021, 41(1): 201 doi: 10.16085/j.issn.1000-6613.2021-0310林俊明, 岑潔, 李正甲, 等. Ni基重整催化劑失活機理研究進展. 化工進展, 2021, 41(1):201 doi: 10.16085/j.issn.1000-6613.2021-0310 [44] Kwak J H, Hu J Z, Mei D H, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3. Science, 2009, 325(5948): 1670 doi: 10.1126/science.1176745 [45] Wang Z C, Jiang Y J, Yi X F, et al. High population and dispersion of pentacoordinated AlV species on the surface of flame-made amorphous silica-alumina. Sci Bull, 2019, 64(8): 516 doi: 10.1016/j.scib.2019.04.002 [46] Wang Z C, Jiang Y J, Jin F Z, et al. Strongly enhanced acidity and activity of amorphous silica-alumina by formation of pentacoordinated Alv species. J Catal, 2019, 372: 1 doi: 10.1016/j.jcat.2019.02.007 [47] Wu M W, Li W Z, Ogunbiyi A T, et al. Highly active and stable palladium catalysts supported on surface-modified ceria nanowires for lean methane combustion. ChemCatChem, 2021, 13(2): 664 doi: 10.1002/cctc.202001438 [48] Li C S, Li W Z, Chen K, et al. Palladium nanoparticles supported on surface-modified metal oxides for catalytic oxidation of lean methane. ACS Appl Nano Mater, 2020, 3(12): 12130 doi: 10.1021/acsanm.0c02614 [49] Zhan Y Y, Kang L, Zhou Y C, et al. Pd/Al2O3 catalysts modified with Mg for catalytic combustion of methane: Effect of Mg/Al mole ratios on the supports and active PdOx formation. J Fuel Chem Technol, 2019, 47(10): 1235 doi: 10.1016/S1872-5813(19)30050-7 [50] Lan L, Huang X, Zhou W Q, et al. Development of a thermally stable Pt catalyst by redispersion between CeO2 and Al2O3. RSC Adv, 2021, 11(12): 7015 doi: 10.1039/D1RA00059D [51] Jeong H, Kwon O, Kim B S, et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat Catal, 2020, 3(4): 368 doi: 10.1038/s41929-020-0427-z [52] Cargnello M, Jaén J J D, Garrido J C H, et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science, 2012, 337(6095): 713 doi: 10.1126/science.1222887 [53] Velinova R, Todorova S, Drenchev B, et al. Complex study of the activity, stability and sulfur resistance of Pd/La2O3–CeO2–Al2O3 system as monolithic catalyst for abatement of methane. Chem Eng J, 2019, 368: 865 doi: 10.1016/j.cej.2019.03.017 [54] Wu Y, Li G X, Hu W, et al. Effect of MOx (M=Ce, Ni, Co, Mg) on activity and hydrothermal stability of Pd supported on ZrO2–Al2O3 composite for methane lean combustion. J Taiwan Inst Chem Eng, 2018, 85: 176 doi: 10.1016/j.jtice.2018.01.038 [55] Lee J, Kim M Y, Jeon J H, et al. Effect of Pt pre-sintering on the durability of PtPd/Al2O3 catalysts for CH4 oxidation. Appl Catal B Environ, 2020, 260: 118098 doi: 10.1016/j.apcatb.2019.118098 [56] Cai W M, Zhang S G, Lv J G, et al. Nanotubular gamma alumina with high-energy external surfaces: Synthesis and high performance for catalysis. ACS Catal, 2017, 7(6): 4083 doi: 10.1021/acscatal.7b00080 -