-
摘要: 在研究了溫度對鎳基高溫合金GH4169蠕變行為及機制的影響基礎之上,分析了其斷口形貌和蠕變斷裂機理。實驗結果表明,隨著蠕變溫度的升高,GH4169合金的穩態蠕變速率逐漸升高,蠕變壽命顯著降低,即該合金有極強的溫度敏感性。蠕變過程中,γ″相長大聚集,并向δ相轉變,隨著蠕變溫度的升高,γ″相向δ相轉變速度加快,晶內的γ″相數量減少,δ相所占體積增加,尺寸增大,次生裂紋數量減少,尺寸減小。當蠕變溫度為650 ℃時,斷口中存在較多亮白色撕裂棱,韌窩尺寸大小不一,有少量析出物和碳化物;當溫度提高到670 ℃時,韌窩尺寸減小,以淺韌窩為主,且出現解理面;當溫度提高到690 ℃時,只存在少量韌窩,且δ相的數量顯著增多,出現解理臺階,斷裂方式為解理斷裂或準解理斷裂。
-
關鍵詞:
- GH4169鎳基高溫合金 /
- 蠕變性能 /
- δ相 /
- γ″相 /
- 微觀結構
Abstract: GH4169, a precipitation-strengthened nickel-based superalloy, has been extensively used in structural applications in temperatures up to 650 ℃ because of its high-temperature strength, long-term stability, thermal fatigue, creep resistance, corrosion resistance, weldability, oxidation resistance, and easiness to forging. Although GH4169 has been introduced for many years, it is still widely used in many applications, especially under a high-temperature environment such as the turbine engine and the turbine disk part of advanced aero-engines, spacecraft, and gas turbines. Its microstructure mainly contains five phases: γ, γ″ (Ni3Nb), γ′ (Ni3AlTi), δ (Ni3Nb), and MC carbides. The main strengthening phase of the GH4169 alloy is the γ″ phase, which is metastable, and its phase transformation to the δ phase occurs when exposed at temperatures above 650 ℃. This paper studied the effect of temperature on the creep behavior and mechanism of the nickel-based superalloy GH4169 and analyzed its fracture morphology and creep rupture mechanism. Experimental results showed that the steady creep rate of the GH4169 alloy increased, and the creep life of the GH4169 alloy decreased significantly with the increase of the creep temperature, i.e., the alloy had strong temperature sensitivity. During the creep process, the γ" phase grew, aggregated, and transformed to the δ phase. With the increase of the creep temperature, the transition of the γ″ phase to the δ phase was faster, the amount of γ″ phases in the crystal decreased, the size and volume of the δ phase increased, and the number and size of secondary cracks decreased. When the creep temperature was 650 ℃, more bright white tearing edges in the fracture appeared, the dimple size was different, and there were a small amount of precipitates and carbonization. When the temperature increased to 670 ℃, the dimple size decreased, with mainly shallow dimples and cleavage surfaces appearing. When the temperature increased to 690 ℃, there were only a few dimples and cleavage steps, and the number of δ phases increased significantly, which meant that the fracture mode was cleavage fracture or quasi-cleavage fracture.-
Key words:
- GH4169 nickel-based superalloy /
- creep property /
- δ phase /
- γ″ phase /
- microstructure
-
圖 2 GH4169合金的微觀組織形貌. (a) 熱處理前, 低倍; (b) 熱處理后, 低倍; (c) 熱處理前, 高倍; (d) 熱處理后,高倍
Figure 2. Microstructure of the GH4169 alloy: (a) before heat treatment, low magnification; (b) after heat treatment, low magnification; (c) before heat treatment, high magnification; (d) after heat treatment, high magnification
圖 6 GH4169合金不同蠕變溫度下斷口近端顯微組織形貌. (a) 650 ℃, 低倍; (b) 670 ℃, 低倍; (c) 690 ℃, 低倍; (d) 650 ℃, 高倍; (e) 670 ℃, 高倍; (f) 690 ℃, 高倍
Figure 6. Microstructure of the GH4169 alloy near the fracture surface under different creep temperatures: (a) 650 ℃, low magnification; (b) 670 ℃, low magnification; (c) 690 ℃, low magnification; (d) 650 ℃, high magnification; (e) 670 ℃, high magnification; (f) 690 ℃, high magnification
表 1 鎳基高溫合金GH4169化學成分(質量分數)
Table 1. Chemical compositions of the nickel-based superalloy GH4169
% Ni Cr Nb Mo Ti Al C Co Fe 51.82 18.94 5.23 3.01 1.00 0.59 0.03 0.03 Bal 表 2 不同溫度下GH4169合金的蠕變性能
Table 2. Creep properties of the GH4169 alloy at different temperatures
Temperature/℃ Creep life/
hSteady state creep duration/h Steady state creep
rate/h?1650 117 65 8.045×10?7 670 40 15 3.133×10?6 690 13 4 1.170×10?5 www.77susu.com -
參考文獻
[1] Hou Q, Tao Y, Jia J. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging. Chin J Eng, 2019, 41(2): 209侯瓊, 陶宇, 賈建. 新型粉末高溫合金多火次等溫鍛造過程中晶粒細化機制. 工程科學學報, 2019, 41(2):209 [2] Chen K, Dong J X, Yao Z H. Creep failure and damage mechanism of inconel 718 alloy at 800–900 ℃. Met Mater Int, 2021, 27(5): 970 doi: 10.1007/s12540-019-00447-4 [3] Cottura M, Appolaire B, Finel A, et al. Microstructure evolution under [110] creep in Ni-base superalloys. Acta Mater, 2021, 212: 116851 doi: 10.1016/j.actamat.2021.116851 [4] Liu C, Jiang H, Dong J X, et al. As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605. Chin J Eng, 2019, 41(3): 359劉超, 江河, 董建新, 等. 鈷基高溫合金GH5605鑄態組織及高溫擴散退火過程中元素再分配. 工程科學學報, 2019, 41(3):359 [5] Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy. Chin J Eng, 2018, 40(7): 822侯杰, 董建新, 姚志浩. GH4169合金高溫疲勞裂紋擴展的微觀損傷機制. 工程科學學報, 2018, 40(7):822 [6] Wei K, Zhang Y, Wang T, et al. Investigations on correlation between grain size and stress rupture property of GH4169 alloy. J Aeron Mater, 2020, 40(01): 93 doi: 10.11868/j.issn.1005-5053.2019.000076韋康, 張勇, 王濤, 等. GH4169合金晶粒尺寸與持久性能的關聯性. 航空材料學報, 2020, 40(01):93 doi: 10.11868/j.issn.1005-5053.2019.000076 [7] Liu C, Tian S G, Wang X, et al. Microstructure and creep property of a GH4169 nickel-based superalloy. J Mater Eng, 2017, 45(6): 43 doi: 10.11868/j.issn.1001-4381.2015.001145劉臣, 田素貴, 王欣, 等. 一種GH4169鎳基合金的組織結構與蠕變性能. 材料工程, 2017, 45(6):43 doi: 10.11868/j.issn.1001-4381.2015.001145 [8] Asala G, Andersson J, Ojo O A. A study of the dynamic impact behaviour of IN 718 and ATI 718Plus? superalloys. Philos Mag, 2019, 99(4): 419 doi: 10.1080/14786435.2018.1540891 [9] Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf, 2019, 30: 100877 [10] Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy. Mater Sci Eng A, 2019, 742: 493 doi: 10.1016/j.msea.2018.11.028 [11] Shi J J, Zhou S A, Chen H H, et al. Microstructure and creep anisotropy of Inconel 718 alloy processed by selective laser melting. Mater Sci Eng A, 2021, 805: 140583 doi: 10.1016/j.msea.2020.140583 [12] Li Z R, Tian S G, Zhao Z G, et al. Influence of hot continuous rolling on creep behaviors of GH4169 superalloy. Chin J Nonferrous Met, 2011, 21(7): 1541李振榮, 田素貴, 趙忠剛, 等. 熱連軋對GH4169合金蠕變行為的影響. 中國有色金屬學報, 2011, 21(7):1541 [13] Tian S G, Zhao Z G, Chen L Q, et al. Influence of direct aged treatment on creep behaviors of hot continuous rolling GH4169 superalloy. J Aeronaut Mater, 2010, 30(5): 14 doi: 10.3969/j.issn.1005-5053.2010.5.003田素貴, 趙忠剛, 陳禮清, 等. 直接時效處理對熱連軋GH4169合金蠕變行為的影響. 航空材料學報, 2010, 30(5):14 doi: 10.3969/j.issn.1005-5053.2010.5.003 [14] Hu X T, Ye W M, Zhang L C, et al. Investigation on creep properties and microstructure evolution of GH4169 alloy at different temperatures and stresses. Mater Sci Eng A, 2021, 800: 140338 doi: 10.1016/j.msea.2020.140338 [15] Ruan J J, Ueshima N, Oikawa K. Growth behavior of the δ-Ni3Nb phase in superalloy 718 and modified KJMA modeling for the transformation-time-temperature diagram. J Alloys Compd, 2020, 814: 152289 doi: 10.1016/j.jallcom.2019.152289 [16] Xu Z, Cao L J, Zhu Q, et al. Creep property of Inconel 718 superalloy produced by selective laser melting compared to forging. Mater Sci Eng A, 2020, 794: 139947 doi: 10.1016/j.msea.2020.139947 [17] You X G, Tan Y, Zhang H X, et al. Intermediate temperature creep and deformation behavior of a nickel-based superalloy prepared by electron beam layer solidification. Scr Mater, 2020, 187: 395 doi: 10.1016/j.scriptamat.2020.06.056 [18] Zheng Q Y, Chen Z Q, Yu X F, et al. Influence of solution treatment on creep of a new superalloy GH4169G. Chin J Mater Res, 2013, 27(4): 444鄭渠英, 陳仲強, 于興福, 等. 固溶處理對GH4169G合金蠕變的影響. 材料研究學報, 2013, 27(4):444 [19] Li Z R, Ma C L, Tian S G, et al. Microstructure and creep features of hot continuous rolled GH4169 superalloy after being solution treated. J Mater Sci Eng, 2012, 30(3): 343李振榮, 馬春蕾, 田素貴, 等. 固溶處理的熱連軋GH4169合金的組織與蠕變特征. 材料科學與工程學報, 2012, 30(3):343 [20] Ni Z F, Xue F. High temperature creep characteristics of in-situ micro-/nano-meter TiC dispersion strengthened 304 stainless steel. Chin J Mater Res, 2019, 33(4): 306 doi: 10.11901/1005.3093.2018.422倪自飛, 薛烽. 原位微米/納米TiC顆粒彌散強化304不銹鋼的高溫蠕變特性. 材料研究學報, 2019, 33(4):306 doi: 10.11901/1005.3093.2018.422 [21] Zeng L Y, Qi Y L, Hong Q, et al. Creep behavior of Ti-600 alloy solutioned and aged at α+β region. Rare Met Mater Eng, 2014, 43(11): 2697曾立英, 戚運蓮, 洪權, 等. 固溶時效處理Ti-600合金的蠕變行為研究. 稀有金屬材料與工程, 2014, 43(11):2697 [22] Pellissier G E, Purdy S M. Stereopsis and Quantitative Metallography. Translated by Sun H L, Ma J S. Beijing: China Machine Press, 1980彼里西阿 G E, 浦迪S M. 體視學和定量金相學. 孫惠林, 馬繼畬, 譯. 北京: 機械工業出版社, 1980 [23] Kong Y H, Liu R Y, Wang F, et al. Effects of different heat treatments on microstructures and creep resistance of hot continuous rolled GH4169 alloy. Rare Met Mater Eng, 2013, 42(4): 829 doi: 10.3969/j.issn.1002-185X.2013.04.035孔永華, 劉瑞毅, 王飛, 等. 不同熱處理的熱連軋GH4169合金組織及抗蠕變性能研究. 稀有金屬材料與工程, 2013, 42(4):829 doi: 10.3969/j.issn.1002-185X.2013.04.035 [24] Tan H B, Sun Y L. Effects of heat treatment process on microstructure and mechanical properties of GH4169 superalloy forgings. Hot Working Technology,https://kns.cnki.net/kcms/detail/61.1133.TG.20201105.1101.005.html譚海波, 孫亞利. 熱處理工藝對GH4169高溫合金鍛件組織與力學性能的影響. 熱加工工藝,https://kns.cnki.net/kcms/detail/61.1133.TG.20201105.1101.005.html [25] Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency. Acta Metall Sin, 2018, 54(11): 1653 [26] Li H Y, Kong Y H, Chen G S, et al. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy. Mater Sci Eng A, 2013, 582: 368 doi: 10.1016/j.msea.2013.06.021 [27] Detrois M, Pei Z R, Rozman K A, et al. Partitioning of tramp elements Cu and Si in a Ni-based superalloy and their effect on creep properties. Materialia, 2020, 13: 100843 doi: 10.1016/j.mtla.2020.100843 [28] Chen K, Dong J X, Yao Z H, et al. Creep performance and damage mechanism for Allvac 718Plus superalloy. Mater Sci Eng:A, 2018, 738: 308 doi: 10.1016/j.msea.2018.09.088 [29] Peng Z C, Zou J W, Yang J, et al. Influence of γ’ precipitate on deformation and fracture during creep in PM nickel-based superalloy. Prog Nat Sci:Mater Int, 2021, 31(2): 303 doi: 10.1016/j.pnsc.2020.12.008 -