<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

溫度對GH4169合金蠕變行為及機制的影響

高圣勇 葛樹欣 楊選宏 王倩 包燕平

高圣勇, 葛樹欣, 楊選宏, 王倩, 包燕平. 溫度對GH4169合金蠕變行為及機制的影響[J]. 工程科學學報, 2023, 45(2): 301-309. doi: 10.13374/j.issn2095-9389.2021.08.27.005
引用本文: 高圣勇, 葛樹欣, 楊選宏, 王倩, 包燕平. 溫度對GH4169合金蠕變行為及機制的影響[J]. 工程科學學報, 2023, 45(2): 301-309. doi: 10.13374/j.issn2095-9389.2021.08.27.005
GAO Sheng-yong, GE Shu-xin, YANG Xuan-hong, WANG Qian, BAO Yan-ping. Effect of temperature on the creep behavior and mechanism of GH4169 alloy[J]. Chinese Journal of Engineering, 2023, 45(2): 301-309. doi: 10.13374/j.issn2095-9389.2021.08.27.005
Citation: GAO Sheng-yong, GE Shu-xin, YANG Xuan-hong, WANG Qian, BAO Yan-ping. Effect of temperature on the creep behavior and mechanism of GH4169 alloy[J]. Chinese Journal of Engineering, 2023, 45(2): 301-309. doi: 10.13374/j.issn2095-9389.2021.08.27.005

溫度對GH4169合金蠕變行為及機制的影響

doi: 10.13374/j.issn2095-9389.2021.08.27.005
基金項目: 2020年河北省重點研究資助項目(JMRH2020-27);河北省省級科技計劃資助項目(20311007D)
詳細信息
    通訊作者:

    E-mail: wangqian296@163.com

  • 中圖分類號: TG132.3-2

Effect of temperature on the creep behavior and mechanism of GH4169 alloy

More Information
  • 摘要: 在研究了溫度對鎳基高溫合金GH4169蠕變行為及機制的影響基礎之上,分析了其斷口形貌和蠕變斷裂機理。實驗結果表明,隨著蠕變溫度的升高,GH4169合金的穩態蠕變速率逐漸升高,蠕變壽命顯著降低,即該合金有極強的溫度敏感性。蠕變過程中,γ″相長大聚集,并向δ相轉變,隨著蠕變溫度的升高,γ″相向δ相轉變速度加快,晶內的γ″相數量減少,δ相所占體積增加,尺寸增大,次生裂紋數量減少,尺寸減小。當蠕變溫度為650 ℃時,斷口中存在較多亮白色撕裂棱,韌窩尺寸大小不一,有少量析出物和碳化物;當溫度提高到670 ℃時,韌窩尺寸減小,以淺韌窩為主,且出現解理面;當溫度提高到690 ℃時,只存在少量韌窩,且δ相的數量顯著增多,出現解理臺階,斷裂方式為解理斷裂或準解理斷裂。

     

  • 圖  1  GH4169合金蠕變試樣尺寸

    Figure  1.  Dimension of the GH4169 alloy specimen for creep tests

    圖  2  GH4169合金的微觀組織形貌. (a) 熱處理前, 低倍; (b) 熱處理后, 低倍; (c) 熱處理前, 高倍; (d) 熱處理后,高倍

    Figure  2.  Microstructure of the GH4169 alloy: (a) before heat treatment, low magnification; (b) after heat treatment, low magnification; (c) before heat treatment, high magnification; (d) after heat treatment, high magnification

    圖  3  熱處理后GH4169合金的照片. (a) 掃描電鏡, 低倍; (b) 掃描電鏡, 高倍; (c) 透射電鏡, 低倍; (d) 透射電鏡, 高倍

    Figure  3.  Images of the GH4169 alloy after heat treatment: (a) SEM, low magnification; (b) SEM, high magnification; (c) TEM, low magnification; (d) TEM, high magnification

    圖  4  GH4169合金在不同溫度下測定的蠕變曲線

    Figure  4.  Creep curves of the GH4169 alloy under different temperatures

    圖  5  應變速率與溫度倒數之間的關系

    Figure  5.  Relationship between the strain rate and reciprocal temperature

    圖  6  GH4169合金不同蠕變溫度下斷口近端顯微組織形貌. (a) 650 ℃, 低倍; (b) 670 ℃, 低倍; (c) 690 ℃, 低倍; (d) 650 ℃, 高倍; (e) 670 ℃, 高倍; (f) 690 ℃, 高倍

    Figure  6.  Microstructure of the GH4169 alloy near the fracture surface under different creep temperatures: (a) 650 ℃, low magnification; (b) 670 ℃, low magnification; (c) 690 ℃, low magnification; (d) 650 ℃, high magnification; (e) 670 ℃, high magnification; (f) 690 ℃, high magnification

    圖  7  Image-Pro Plus 測定不同蠕變溫度下的δ相. (a) 蠕變前; (b) 650 ℃; (c) 670 ℃; (d) 690 ℃

    Figure  7.  Image-Pro Plus measures the δ phase at different creep temperatures: (a) before creep; (b) 650 ℃; (c) 670 ℃; (d) 690 ℃

    圖  8  GH4169合金蠕變前和不同蠕變溫度下的γ″相和γ'相形貌. (a) 蠕變前; (b) 650 ℃; (c) 670 ℃; (d) 690 ℃

    Figure  8.  Morphology of the γ″ phase and γ' phase of the GH4169 alloy before creep and at different creep temperatures: (a) before creep; (b) 650 ℃; (c) 670 ℃; (d) 690 ℃

    圖  9  在650 ℃條件下,GH4169合金蠕變斷裂后的TEM微觀組織形貌

    Figure  9.  TEM microstructure of the GH4169 alloy after creep fracture at 650 ℃

    圖  10  GH4169合金不同蠕變溫度下的蠕變斷口形貌. (a) 650 ℃; (b) 670 ℃; (c) 690 ℃

    Figure  10.  Creep fracture morphology of the GH4169 alloy at different creep temperatures: (a) 650 ℃; (b) 670 ℃; (c) 690 ℃

    表  1  鎳基高溫合金GH4169化學成分(質量分數)

    Table  1.   Chemical compositions of the nickel-based superalloy GH4169 %

    NiCrNbMoTiAlCCoFe
    51.8218.945.233.011.000.590.030.03Bal
    下載: 導出CSV

    表  2  不同溫度下GH4169合金的蠕變性能

    Table  2.   Creep properties of the GH4169 alloy at different temperatures

    Temperature/℃Creep life/
    h
    Steady state creep duration/hSteady state creep
    rate/h?1
    650117658.045×10?7
    67040153.133×10?6
    6901341.170×10?5
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Hou Q, Tao Y, Jia J. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging. Chin J Eng, 2019, 41(2): 209

    侯瓊, 陶宇, 賈建. 新型粉末高溫合金多火次等溫鍛造過程中晶粒細化機制. 工程科學學報, 2019, 41(2):209
    [2] Chen K, Dong J X, Yao Z H. Creep failure and damage mechanism of inconel 718 alloy at 800–900 ℃. Met Mater Int, 2021, 27(5): 970 doi: 10.1007/s12540-019-00447-4
    [3] Cottura M, Appolaire B, Finel A, et al. Microstructure evolution under [110] creep in Ni-base superalloys. Acta Mater, 2021, 212: 116851 doi: 10.1016/j.actamat.2021.116851
    [4] Liu C, Jiang H, Dong J X, et al. As-cast microstructure and redistribution of elements in high-temperature diffusion annealing in cobalt-base superalloy GH5605. Chin J Eng, 2019, 41(3): 359

    劉超, 江河, 董建新, 等. 鈷基高溫合金GH5605鑄態組織及高溫擴散退火過程中元素再分配. 工程科學學報, 2019, 41(3):359
    [5] Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy. Chin J Eng, 2018, 40(7): 822

    侯杰, 董建新, 姚志浩. GH4169合金高溫疲勞裂紋擴展的微觀損傷機制. 工程科學學報, 2018, 40(7):822
    [6] Wei K, Zhang Y, Wang T, et al. Investigations on correlation between grain size and stress rupture property of GH4169 alloy. J Aeron Mater, 2020, 40(01): 93 doi: 10.11868/j.issn.1005-5053.2019.000076

    韋康, 張勇, 王濤, 等. GH4169合金晶粒尺寸與持久性能的關聯性. 航空材料學報, 2020, 40(01):93 doi: 10.11868/j.issn.1005-5053.2019.000076
    [7] Liu C, Tian S G, Wang X, et al. Microstructure and creep property of a GH4169 nickel-based superalloy. J Mater Eng, 2017, 45(6): 43 doi: 10.11868/j.issn.1001-4381.2015.001145

    劉臣, 田素貴, 王欣, 等. 一種GH4169鎳基合金的組織結構與蠕變性能. 材料工程, 2017, 45(6):43 doi: 10.11868/j.issn.1001-4381.2015.001145
    [8] Asala G, Andersson J, Ojo O A. A study of the dynamic impact behaviour of IN 718 and ATI 718Plus? superalloys. Philos Mag, 2019, 99(4): 419 doi: 10.1080/14786435.2018.1540891
    [9] Hosseini E, Popovich V A. A review of mechanical properties of additively manufactured Inconel 718. Addit Manuf, 2019, 30: 100877
    [10] Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy. Mater Sci Eng A, 2019, 742: 493 doi: 10.1016/j.msea.2018.11.028
    [11] Shi J J, Zhou S A, Chen H H, et al. Microstructure and creep anisotropy of Inconel 718 alloy processed by selective laser melting. Mater Sci Eng A, 2021, 805: 140583 doi: 10.1016/j.msea.2020.140583
    [12] Li Z R, Tian S G, Zhao Z G, et al. Influence of hot continuous rolling on creep behaviors of GH4169 superalloy. Chin J Nonferrous Met, 2011, 21(7): 1541

    李振榮, 田素貴, 趙忠剛, 等. 熱連軋對GH4169合金蠕變行為的影響. 中國有色金屬學報, 2011, 21(7):1541
    [13] Tian S G, Zhao Z G, Chen L Q, et al. Influence of direct aged treatment on creep behaviors of hot continuous rolling GH4169 superalloy. J Aeronaut Mater, 2010, 30(5): 14 doi: 10.3969/j.issn.1005-5053.2010.5.003

    田素貴, 趙忠剛, 陳禮清, 等. 直接時效處理對熱連軋GH4169合金蠕變行為的影響. 航空材料學報, 2010, 30(5):14 doi: 10.3969/j.issn.1005-5053.2010.5.003
    [14] Hu X T, Ye W M, Zhang L C, et al. Investigation on creep properties and microstructure evolution of GH4169 alloy at different temperatures and stresses. Mater Sci Eng A, 2021, 800: 140338 doi: 10.1016/j.msea.2020.140338
    [15] Ruan J J, Ueshima N, Oikawa K. Growth behavior of the δ-Ni3Nb phase in superalloy 718 and modified KJMA modeling for the transformation-time-temperature diagram. J Alloys Compd, 2020, 814: 152289 doi: 10.1016/j.jallcom.2019.152289
    [16] Xu Z, Cao L J, Zhu Q, et al. Creep property of Inconel 718 superalloy produced by selective laser melting compared to forging. Mater Sci Eng A, 2020, 794: 139947 doi: 10.1016/j.msea.2020.139947
    [17] You X G, Tan Y, Zhang H X, et al. Intermediate temperature creep and deformation behavior of a nickel-based superalloy prepared by electron beam layer solidification. Scr Mater, 2020, 187: 395 doi: 10.1016/j.scriptamat.2020.06.056
    [18] Zheng Q Y, Chen Z Q, Yu X F, et al. Influence of solution treatment on creep of a new superalloy GH4169G. Chin J Mater Res, 2013, 27(4): 444

    鄭渠英, 陳仲強, 于興福, 等. 固溶處理對GH4169G合金蠕變的影響. 材料研究學報, 2013, 27(4):444
    [19] Li Z R, Ma C L, Tian S G, et al. Microstructure and creep features of hot continuous rolled GH4169 superalloy after being solution treated. J Mater Sci Eng, 2012, 30(3): 343

    李振榮, 馬春蕾, 田素貴, 等. 固溶處理的熱連軋GH4169合金的組織與蠕變特征. 材料科學與工程學報, 2012, 30(3):343
    [20] Ni Z F, Xue F. High temperature creep characteristics of in-situ micro-/nano-meter TiC dispersion strengthened 304 stainless steel. Chin J Mater Res, 2019, 33(4): 306 doi: 10.11901/1005.3093.2018.422

    倪自飛, 薛烽. 原位微米/納米TiC顆粒彌散強化304不銹鋼的高溫蠕變特性. 材料研究學報, 2019, 33(4):306 doi: 10.11901/1005.3093.2018.422
    [21] Zeng L Y, Qi Y L, Hong Q, et al. Creep behavior of Ti-600 alloy solutioned and aged at α+β region. Rare Met Mater Eng, 2014, 43(11): 2697

    曾立英, 戚運蓮, 洪權, 等. 固溶時效處理Ti-600合金的蠕變行為研究. 稀有金屬材料與工程, 2014, 43(11):2697
    [22] Pellissier G E, Purdy S M. Stereopsis and Quantitative Metallography. Translated by Sun H L, Ma J S. Beijing: China Machine Press, 1980

    彼里西阿 G E, 浦迪S M. 體視學和定量金相學. 孫惠林, 馬繼畬, 譯. 北京: 機械工業出版社, 1980
    [23] Kong Y H, Liu R Y, Wang F, et al. Effects of different heat treatments on microstructures and creep resistance of hot continuous rolled GH4169 alloy. Rare Met Mater Eng, 2013, 42(4): 829 doi: 10.3969/j.issn.1002-185X.2013.04.035

    孔永華, 劉瑞毅, 王飛, 等. 不同熱處理的熱連軋GH4169合金組織及抗蠕變性能研究. 稀有金屬材料與工程, 2013, 42(4):829 doi: 10.3969/j.issn.1002-185X.2013.04.035
    [24] Tan H B, Sun Y L. Effects of heat treatment process on microstructure and mechanical properties of GH4169 superalloy forgings. Hot Working Technology,https://kns.cnki.net/kcms/detail/61.1133.TG.20201105.1101.005.html

    譚海波, 孫亞利. 熱處理工藝對GH4169高溫合金鍛件組織與力學性能的影響. 熱加工工藝,https://kns.cnki.net/kcms/detail/61.1133.TG.20201105.1101.005.html
    [25] Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure Evolution of Inconel 718 Superalloy During Hot Working and Its Recent Development Tendency. Acta Metall Sin, 2018, 54(11): 1653
    [26] Li H Y, Kong Y H, Chen G S, et al. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy. Mater Sci Eng A, 2013, 582: 368 doi: 10.1016/j.msea.2013.06.021
    [27] Detrois M, Pei Z R, Rozman K A, et al. Partitioning of tramp elements Cu and Si in a Ni-based superalloy and their effect on creep properties. Materialia, 2020, 13: 100843 doi: 10.1016/j.mtla.2020.100843
    [28] Chen K, Dong J X, Yao Z H, et al. Creep performance and damage mechanism for Allvac 718Plus superalloy. Mater Sci Eng:A, 2018, 738: 308 doi: 10.1016/j.msea.2018.09.088
    [29] Peng Z C, Zou J W, Yang J, et al. Influence of γ’ precipitate on deformation and fracture during creep in PM nickel-based superalloy. Prog Nat Sci:Mater Int, 2021, 31(2): 303 doi: 10.1016/j.pnsc.2020.12.008
  • 加載中
圖(10) / 表(2)
計量
  • 文章訪問數:  624
  • HTML全文瀏覽量:  251
  • PDF下載量:  97
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-27
  • 網絡出版日期:  2021-10-15
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回