Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste
-
摘要: 在全尾砂膏體充填的基礎上提出了全固廢膏體充填,將全尾砂、廢石、水淬渣等固廢制備成膏體料漿充填至井下采空區,實現采空區垮塌、尾礦庫潰壩和廢石場滑坡的協同治理,達到“全廢治三害”的效果。為此,研究了固體質量分數、廢石摻量和膠固粉耗量對全固廢膏體的塌落度、屈服應力、單軸抗壓強度和泌水率的影響。根據國家標準規定的技術指標范圍,對全固廢膏體的關鍵性能指標進行了多目標優化。研究發現,全固廢膏體的關鍵性能指標和全尾砂膏體相似,具有良好的流動性、輸送性能與力學性能,并具有一定的泌水性。固體質量分數、廢石摻量和膠固粉耗量對全固廢膏體的關鍵性能指標具有顯著的影響,其中固體質量分數對塌落度和屈服應力影響最大,膠固粉耗量對單軸抗壓強度和泌水率的影響最大。通過研究,最終多目標優化所得最優參數是固體質量分數為79.31%、廢石摻量為18.86%(質量分數)、膠固粉耗量(膠固粉質量與全尾砂和廢石質量之和的比值)為3∶20,對應的塌落度為25.45 cm、屈服應力為100.49 Pa、單軸抗壓強度為3.55 MPa、泌水率為1.50%。多目標優化結果可為實際應用提供參考,而總評歸一值模型也可應用于其他礦山膏體的多目標優化。Abstract: Tailings and waste rock produced in metal mines are the most common industrial solid wastes all over the world, resulting in serious environmental and safety issues. Cemented paste backfill (CPB) is widely used for tailings management and stope treatment. CPB of total solid waste (TSW-CPB) was proposed on the basis of CPB of full-tailings. In the TSW-CPB process, thickened full-tailings, waste rock, and slag are mixed to prepare a paste that is filled into the stope. TSW-CPB can avoid the collapse of a stope, failure of the tailings storage facility, and landslide of a waste-rock yard, achieving the goal of “total waste to cure three harms.” The effects of solid fraction (SF), waste rock dosage (WRD), and glue powder dosage (GPD) on the slump (S), yield stress (τ0), uniaxial compressive strength (UCS), and bleeding rate (BR) were investigated through orthogonal experiments. According to the scope of technical indicators specified in the National Standard of the People’s Republic of China “Technical specification for the total tailings paste backfill (GB/T 39489—2020),” the overall desirability function approach was used to conduct multiple response optimization of key TSW-CPB performance indicators. TSW-CPB was shown to have similar fluidity, transportation performance, mechanical properties, and bleeding performance to the CPB of full-tailings. The SF, WRD, and GPD affect the S, τ0, UCS, and BR of TSW-CPB considerably. The SF has the most important influence on S and τ0, while GPD has the most substantial impact on UCS and BR. Multiple response optimization yielded SF = 79.31%, WRD = 18.86%, and GPD = 3:20, with S = 25.45 cm, τ0 = 100.49 Pa, UCS = 3.55 MPa, and BR = 1.50% as the corresponding responses. The optimal results can provide references for practical application, and the overall desirability function approach can be used in other mines to optimize multi objective CPB.
-
表 1 廢石粒級分布
Table 1. Particle-size distribution of waste rock
Particle size/cm Volume fraction/% ?0.5 1.10 0.5?0.6 12.71 0.6?0.7 8.87 0.7?0.8 6.80 0.8?0.9 14.83 0.9?1.0 55.69 表 2 L16(43)正交實驗表及實驗結果
Table 2. Parameters and results of the L16(43) orthogonal experiment
Experiment
numberFactors Responses SF/% WRD/% GPD S/cm τ0/Pa UCS/MPa BR/% 1 77 (Level 1) 5 (Level 1) 1∶10 (Level 1) 28.1 59.439 1.4 13.69 2 77 10 (Level 2) 1∶8 (Level 2) 27.9 62.236 1.6 11.83 3 77 15 (Level 3) 1∶6 (Level 3) 28.0 82.282 2.7 5.60 4 77 20 (Level 4) 1∶4 (Level 4) 28.3 91.606 2.6 0.44 5 78 (Level 2) 5 1∶8 26.9 170.860 2.1 6.24 6 78 10 1∶10 27.8 160.138 0.6 11.98 7 78 15 1∶4 27.6 105.192 3.9 0.43 8 78 20 1∶6 26.8 62.935 3.4 2.68 9 80 (Level 3) 5 1∶6 25.4 269.683 5.1 0.21 10 80 10 1∶4 25.7 224.236 6.3 0.42 11 80 15 1∶10 26.5 149.413 1.5 5.12 12 80 20 1∶8 26.1 116.081 3.6 1.48 13 81 (Level 4) 5 1∶4 24.7 321.436 10.6 0.32 14 81 10 1∶6 25.8 241.718 6.1 0.14 15 81 15 1∶8 25.9 168.060 4.0 0.94 16 81 20 1∶10 26.3 166.429 3.1 0.88 表 3 全尾砂膏體的性能指標范圍
Table 3. Property range of full-tailings paste
S/cm τ0/Pa UCS/MPa BR/% 18?26 100?200 0.2?5 1.5?5 www.77susu.com -
參考文獻
[1] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517吳愛祥, 楊瑩, 程海勇, 等. 中國膏體技術發展現狀與趨勢. 工程科學學報, 2018, 40(5):517 [2] Qi C C, Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner Eng, 2019, 144: 106025 doi: 10.1016/j.mineng.2019.106025 [3] Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Miner Eng, 2020, 156: 106488 doi: 10.1016/j.mineng.2020.106488 [4] Wu A X, Yang Y, Wang Y M, et al. Mathematical modelling of underflow concentration in a deep cone thickener and analysis of the dynamic compaction mechanism. Chin J Eng, 2018, 40(2): 152吳愛祥, 楊瑩, 王貽明, 等. 深錐濃密機底流濃度模型及動態壓密機理分析. 工程科學學報, 2018, 40(2):152 [5] Wang Y, Wu A X, Ruan Z E, et al. Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process. Int J Miner Metall Mater, 2020, 27(11): 1430 doi: 10.1007/s12613-020-2116-y [6] Yang L H, Wang H J, Wu A X, et al. Shear thinning and thickening of cemented paste backfill. Appl Rheol, 2019, 29(1): 80 doi: 10.1515/arh-2019-0008 [7] Li X, Li C P, Yan B H, et al. Analysis of the influence factors of paste stirring based on discrete element method. Met Mine, 2021, 3: 19李雪, 李翠平, 顏丙恒, 等. 基于離散元的膏體攪拌影響因素分析. 金屬礦山, 2021, 3:19 [8] Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes in the process of stirring and shearing. Chin J Eng, 2016, 38(10): 1343楊柳華, 王洪江, 吳愛祥, 等. 全尾砂膏體攪拌剪切過程的觸變性. 工程科學學報, 2016, 38(10):1343 [9] Liu X H, Wu A X, Yao J, et al. Resistance characteristic and approximate calculation of paste tailings slip flow inside pipe. Chin J Nonferrous Met, 2019, 29(10): 2403劉曉輝, 吳愛祥, 姚建, 等. 膏體尾礦管內滑移流動阻力特性及其近似計算方法. 中國有色金屬學報, 2019, 29(10):2403 [10] Cheng H Y, Wu S C, Li H, et al. Influence of time and temperature on rheology and flow performance of cemented paste backfill. Constr Build Mater, 2020, 231: 117117 doi: 10.1016/j.conbuildmat.2019.117117 [11] Liu L, Fang Z Y, Qi C C, et al. Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects. Powder Technol, 2019, 343: 454 doi: 10.1016/j.powtec.2018.11.070 [12] Qi C C, Chen Q S, Fourie A, et al. Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study. Powder Technol, 2018, 333: 9 doi: 10.1016/j.powtec.2018.03.070 [13] Deng X J, Zhang J X, Klein B, et al. Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill. Int J Miner Process, 2017, 168: 116 doi: 10.1016/j.minpro.2017.09.019 [14] Wu A X, Wang Y, Wang H J, et al. Coupled effects of cement type and water quality on the properties of cemented paste backfill. Int J Miner Process, 2015, 143: 65 doi: 10.1016/j.minpro.2015.09.004 [15] Jiang H Q, Fall M, Cui L. Freezing behaviour of cemented paste backfill material in column experiments. Constr Build Mater, 2017, 147: 837 doi: 10.1016/j.conbuildmat.2017.05.002 [16] Cao S, Zheng D, Yilmaz E, et al. Strength development and microstructure characteristics of artificial concrete pillar considering fiber type and content effects. Constr Build Mater, 2020, 256: 119408 doi: 10.1016/j.conbuildmat.2020.119408 [17] Xue Y Z, Wang H J, Tang J X, et al. The Report of Saving & Comprehensive Utilization in China. Beijing: Geological Publishing House, 2015薛亞洲, 王海軍, 湯家軒, 等. 中國礦產資源節約與綜合利用報告. 北京: 地質出版社, 2015 [18] Yao H H, Cai L B, Liu W, et al. Current status and development of comprehensive utilization of waste rock in metal mines in China. Chin J Nonferrous Met, 2021, 31(6): 1649姚華輝, 蔡練兵, 劉維, 等. 我國金屬礦山廢石資源化綜合利用現狀與發展. 中國有色金屬學報, 2021, 31(6):1649 [19] Wang H J, Wu A X, Xiao W G, et al. The progresses of coarse paste fill technology and its existing problem. Met Mine, 2009(11): 1王洪江, 吳愛祥, 肖衛國, 等. 粗粒級膏體充填的技術進展及存在的問題. 金屬礦山, 2009(11):1 [20] Zhang X X, Qiao D P, Sun H S. Simulation on conveying characteristics in pipe about high-density slurry with waste rock-tailing. Chin J Nonferrous Met, 2019, 29(5): 1092張修香, 喬登攀, 孫宏生. 廢石?尾砂高濃度料漿管道輸送特性模擬. 中國有色金屬學報, 2019, 29(5):1092 [21] Li H, Wu A X, Wang H J, et al. Static and dynamic anti-segregation property characterization of coarse-grained paste backfill slurry. J Central South Univ Sci Technol, 2016, 47(11): 3909李紅, 吳愛祥, 王洪江, 等. 粗粒級膏體充填材料靜動態抗離析性能表征. 中南大學學報(自然科學版), 2016, 47(11):3909 [22] Sun W, Wang H J, Hou K P. Control of waste rock-tailings paste backfill for active mining subsidence areas. J Clean Prod, 2018, 171: 567 doi: 10.1016/j.jclepro.2017.09.253 [23] Wu A X, Jiang G Z, Wang Y M. Review and development trend of new type filling cementing materials in mines. Met Mine, 2018, 3: 1吳愛祥, 姜關照, 王貽明. 礦山新型充填膠凝材料概述與發展趨勢. 金屬礦山, 2018, 3:1 [24] General Administration of Quality Supervision, People's Republic of China. GB/T39489—2020 Technical Specification for the Total Tailings Paste Backfill. Beijing: Standards Press of China, 2020國家市場監督管理總局. GB/T39489—2020 全尾砂膏體充填技術規范. 北京: 中國標準出版社, 2020 [25] Yang L H, Wang H J, Wu A X, et al. Gradation optimization of unclassified tailings paste with Gobi aggregates. Chin J Nonferrous Met, 2016, 26(7): 1552楊柳華, 王洪江, 吳愛祥, 等. 全尾砂戈壁集料膏體充填粒級優化. 中國有色金屬學報, 2016, 26(7):1552 [26] Durgun M Y, Atahan H N. Rheological and fresh properties of reduced fine content self-compacting concretes produced with different particle sizes of nano SiO2. Constr Build Mater, 2017, 142: 431 doi: 10.1016/j.conbuildmat.2017.03.098 [27] Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol, 1980, 12(4): 214 doi: 10.1080/00224065.1980.11980968 [28] Castro I A, Silva R S F, Tirapegui J, et al. Simultaneous optimization of response variables in protein mixture formulation: Constrained simplex method approach. Int J Food Sci Technol, 2003, 38(2): 103 doi: 10.1046/j.1365-2621.2003.00650.x [29] Mondal B, Srivastava V C, Mall I D. Electrochemical treatment of dye-bath effluent by stainless steel electrodes: Multiple response optimization and residue analysis. J Environ Sci Heal A, 2012, 47(13): 2040 doi: 10.1080/10934529.2012.695675 [30] Yin S H, Wu A X, Hu K J, et al. The effect of solid components on the rheological and mechanical properties of cemented paste backfill. Miner Eng, 2012, 35: 61 doi: 10.1016/j.mineng.2012.04.008 [31] Li J J, Yilmaz E, Cao S. Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill. Minerals, 2020, 10(10): 922 doi: 10.3390/min10100922 [32] Wang S Y, Wu A X, Ruan Z E, et al. Rheological properties of paste slurry and influence factors based on pipe loop test. J Central South Univ Sci Technol, 2018, 49(10): 2519王少勇, 吳愛祥, 阮竹恩, 等. 基于環管實驗的膏體流變特性及影響因素. 中南大學學報(自然科學版), 2018, 49(10):2519 [33] Vishalakshi K P, Revathi V, Sivamurthy Reddy S. Effect of type of coarse aggregate on the strength properties and fracture energy of normal and high strength concrete. Eng Fract Mech, 2018, 194: 52 doi: 10.1016/j.engfracmech.2018.02.029 [34] Jia J Y, Gu X L. Effects of coarse aggregate surface morphology on aggregate-mortar interface strength and mechanical properties of concrete. Constr Build Mater, 2021, 294: 123515 doi: 10.1016/j.conbuildmat.2021.123515 -