<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

巖爆數據庫管理系統開發及應用

姚志賓 牛文靜 張宇 胡磊 張偉

姚志賓, 牛文靜, 張宇, 胡磊, 張偉. 巖爆數據庫管理系統開發及應用[J]. 工程科學學報, 2022, 44(5): 865-875. doi: 10.13374/j.issn2095-9389.2021.08.12.002
引用本文: 姚志賓, 牛文靜, 張宇, 胡磊, 張偉. 巖爆數據庫管理系統開發及應用[J]. 工程科學學報, 2022, 44(5): 865-875. doi: 10.13374/j.issn2095-9389.2021.08.12.002
YAO Zhi-bin, NIU Wen-jing, ZHANG Yu, HU Lei, ZHANG Wei. Development and application of a rockburst database management system[J]. Chinese Journal of Engineering, 2022, 44(5): 865-875. doi: 10.13374/j.issn2095-9389.2021.08.12.002
Citation: YAO Zhi-bin, NIU Wen-jing, ZHANG Yu, HU Lei, ZHANG Wei. Development and application of a rockburst database management system[J]. Chinese Journal of Engineering, 2022, 44(5): 865-875. doi: 10.13374/j.issn2095-9389.2021.08.12.002

巖爆數據庫管理系統開發及應用

doi: 10.13374/j.issn2095-9389.2021.08.12.002
基金項目: 國家自然科學基金資助項目(51839003)
詳細信息
    通訊作者:

    E-mail: yaozhibin@mail.neu.edu.cn

  • 中圖分類號: TU45

Development and application of a rockburst database management system

More Information
  • 摘要: 針對深部巖體工程科學前沿的巖爆研究難題,分析了制約其動態定量及智能化預警研究的挑戰性問題。為突破挑戰問題制約,采用面向對象的B/S+C/S結構,建立了巖爆數據庫管理系統,包含巖爆案例數據庫、微震波形數據庫、微震時序數據庫,具備多工程管理、詳細數據采集、查詢分析、結果導出等功能的巖爆數據庫管理系統,成功實現了多工程、多源巖爆災害信息的詳細采集與有效管理。利用多個具有巖爆災害的深埋巖體工程,對巖爆數據庫管理系統進行了應用,取得了較好的效果。結果表明建立的巖爆數據庫管理系統具有較好的適用性,可為不同工程巖爆類比研究、巖爆智能預警研究等提供科學、可靠的數據基礎與參考。

     

  • 圖  1  巖爆數據庫管理系統架構圖

    Figure  1.  Architecture diagram of the Rockburst Database Management System

    圖  2  巖爆數據庫管理系統結構圖

    Figure  2.  Structure diagram of the Rockburst Database Management System

    圖  3  巖爆數據庫管理系統主界面

    Figure  3.  Main interface of the Rockburst Database Management System

    圖  4  巖爆案例數據庫界面

    Figure  4.  Interface of rockburst case database

    圖  5  微震波形數據庫界面

    Figure  5.  Interface of microseismic waveform database

    圖  6  微震時序數據庫界面

    Figure  6.  Interface of microseismic time-series database

    圖  7  基于巖爆數據庫管理系統的不同等級巖爆破壞特征

    Figure  7.  Analysis results of failure characteristics of different intensities of rockbursts based on the Rockburst Database Management System

    圖  8  基于巖爆數據庫管理系統的巖爆智能預警結果

    Figure  8.  Rockburst intelligent warning results based on the Rockburst Database Management System

    圖  9  預警區域微震活動特征。(a)微震活動時空分布;(b)微震活動時序

    Figure  9.  Characteristics of microseismicity in the rockburst warning area: (a) temporal and spatial distribution of microseismicity; (b) time series of microseismicity

    圖  10  巖爆預警結果與實際發生情況。(a)巖爆預警結果;(b)巖爆實際發生情況

    Figure  10.  Rockburst warning results and actual occurrence: (a) rockburst warning results; (b) actual occurrence

    表  1  巖爆數據庫管理系統主要內容

    Table  1.   Main contents of the Rockburst Database Management System

    Database typeMain contentSpecific information
    Rockburst
    case database
    Basic information of the projectProject overview, layout of the microseismic monitoring system, excavation method, blasting time, geological survey information, and excavation and support design information
    Basic information of rockburstsTime of occurrence, time lag behind blasting, duration, occurrence station, type, intensity, and occurrence process description
    Crater and rock block informationShape and volume of the crater, location of the crater, maximum ejection distance, maximum depth of the crater, and shape of the rockburst block
    Geological information of surrounding rocksLithology, rock mass structure type, quality grade of the surrounding rocks, groundwater conditions, occurrence of structural planes, and filling condition
    Initial support and damage informationTime and type of the initial support of surrounding rocks, initial support failure, time for danger as well as slag removal in the rockburst area, and downtime
    New support measure informationNew support type, support time, support area, and support parameters
    Original rock stress and strength informationBuried depth, direction and magnitude of principal stress, uniaxial compressive strength of rock, strain energy index, and brittleness index
    Attachment informationRockburst video, picture, construction drawings, and construction organization plan
    Microseismic waveform databaseMicroseismic waveform fileWaveform data of all microseismic information monitored
    Waveform typeBlasting waveform, rock fracture waveform, mechanical vibration waveform, and electrical noise waveform
    Waveform characteristic parametersP-wave first-arrival, S-wave first-arrival, overall ringing rate, maximum amplitude, maximum amplitude position, and dominant frequency
    Microseismic monitoring systemIMS, SSS, ESG, and SOS
    Sensor type and quantityUniaxial velocity type, uniaxial acceleration type, triaxial velocity type, triaxial acceleration type, and number of sensors
    Sensor installation modeTemporary installation in the hole, permanent installation in the hole, and installation of wave guide rod outside the hole
    Microseismic sequence databaseMicro-fracture information fileTime, coordinate, energy, apparent volume, magnitude, and other characteristic parameter information of the rock mass fracture event
    Blasting information fileBlasting time, blasting position, and other information
    Microseismic event extraction areaStart chainage of warning area, tunnel face chainage, and end chainage of warning area
    Data continuityMonitoring the equipment operation and whether the monitoring data are continuous
    Microseismic sequence fileMicroseismic time series data file generated through calculation
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Qian Q H. Relying on unique advantages of China, accelerate the great goal of becoming a powerful country through science and technology. Sci Technol Rev, 2020, 38(10): 1

    錢七虎. 依托中國的獨特優勢, 加速邁向科技強國的偉大目標. 科技導報, 2020, 38(10):1
    [2] Zheng Z X, Sun Q Q. Sichuan-Tibet railway tunnel project. Tunn Constr, 2017, 37(8): 1049

    鄭宗溪, 孫其清. 川藏鐵路隧道工程. 隧道建設, 2017, 37(8):1049
    [3] Feng X T, Chen B R, Zhang C Q. Mechanism, Warning and Dynamic Control of Rockburst Development Processes. Beijing: Science Press, 2013

    馮夏庭, 陳炳瑞, 張傳慶. 巖爆孕育過程的機制、預警與動態調控. 北京: 科學出版社, 2013
    [4] Feng X T. Rockburst: Mechanism, Monitoring, Warning and Mitigation. London: Elsevier-Health Sciences Division, 2017
    [5] Zhou J, Li X B, Mitri H S. Evaluation method of rockburst: State-of-the-art literature review. Tunn Undergr Space Technol, 2018, 81: 632 doi: 10.1016/j.tust.2018.08.029
    [6] Liang W Z, Dai B, Zhao G Y, et al. A scientometric review on rockburst in hard rock: Two decades of review from 2000 to 2019. Geofluids, 2020(12): 1
    [7] Feng X T, Xiao Y X, Feng G L, et al. Study on the development processes of rockbursts. Chin J Rock Mech Eng, 2019, 38(4): 649

    馮夏庭, 肖亞勛, 豐光亮, 等. 巖爆孕育過程研究. 巖石力學與工程學報, 2019, 38(4):649
    [8] Feng X T. Adaptive pattern recognition to predict rockbursts in underground openings. J Northeast Univ, 1994, 15(5): 471

    馮夏庭. 地下峒室巖爆預報的自適應模式識別方法. 東北大學學報, 1994, 15(5):471
    [9] Feng X T, Webber S, Ozbay M U. Neural network assessment of rockburst risks for deep gold mines in South Africa. Trans Nonferrous Met Soc China, 1998, 8(2): 335
    [10] Feng X T, Wang Y J. New development in researching rockburst induced by mining at great depth and its control strategies. China Min Mag, 1998, 7(5): 42

    馮夏庭, 王泳嘉. 深部開采誘發的巖爆及其防治策略的研究進展. 中國礦業, 1998, 7(5):42
    [11] Feng G L, Feng X T, Chen B R, et al. A microseismic method for dynamic warning of rockburst development processes in tunnels. Rock Mech Rock Eng, 2015, 48(5): 2061 doi: 10.1007/s00603-014-0689-3
    [12] Dong L J, Li X B, Peng K. Prediction of rockburst classification using Random Forest. Trans Nonferrous Met Soc China, 2013, 23(2): 472 doi: 10.1016/S1003-6326(13)62487-5
    [13] Li T Z, Li Y X, Yang X L. Rock burst prediction based on genetic algorithms and extreme learning machine. J Central South Univ, 2017, 24(9): 2105 doi: 10.1007/s11771-017-3619-1
    [14] Li N, Jimenez R. A logistic regression classifier for long-term probabilistic prediction of rock burst hazard. Nat Hazards, 2018, 90(1): 197 doi: 10.1007/s11069-017-3044-7
    [15] Xiao Y X, Feng X T, Hudson J A, et al. ISRM suggested method for in situ microseismic monitoring of the fracturing process in rock masses. Rock Mech Rock Eng, 2016, 49(1): 343 doi: 10.1007/s00603-015-0859-y
    [16] Mei S M, Hu X C, Su G S, et al. Model test study of the influence of intermediate principal stress on rockburst in tunnel. Rock Soil Mech, 2019, 40(10): 3959

    梅詩明, 胡小川, 蘇國韶, 等. 中間主應力對隧洞巖爆影響的模型試驗研究. 巖土力學, 2019, 40(10):3959
    [17] Feng G L, Feng X T, Xiao Y X, et al. Characteristic microseismicity during the development process of intermittent rockburst in a deep railway tunnel. Int J Rock Mech Min Sci, 2019, 124: 104135 doi: 10.1016/j.ijrmms.2019.104135
    [18] Xu N W, Li T B, Dai F, et al. Microseismic monitoring of strainburst activities in deep tunnels at the Jinping II hydropower station, China. Rock Mech Rock Eng, 2016, 49(3): 981 doi: 10.1007/s00603-015-0784-0
    [19] Xiao Y X, Feng X T, Li S J, et al. Rock mass failure mechanisms during the evolution process of rockbursts in tunnels. Int J Rock Mech Min Sci, 2016, 83: 174 doi: 10.1016/j.ijrmms.2016.01.008
    [20] Xue Y G, Bai C H, Kong F M, et al. A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria. Eng Geol, 2020, 268: 105515 doi: 10.1016/j.enggeo.2020.105515
    [21] Pu Y Y, Apel D B, Liu V, et al. Machine learning methods for rockburst prediction-state-of-the-art review. Int J Min Sci Technol, 2019, 29(4): 565 doi: 10.1016/j.ijmst.2019.06.009
    [22] Niu W J, Feng X T, Yao Z B, et al. Method for Screening Microseismic Events for Rockburst Warning in Deep Tunnel: China Patent, CN201910937940.6. 2019-12-24

    牛文靜, 馮夏庭, 姚志賓, 等. 一種用于深埋隧道巖爆預警微震事件篩選的方法: 中國專利, 201910937940.6. 2019-12-24
    [23] Zhang W, Feng X T, Bi X, et al. An arrival time picker for microseismic rock fracturing waveforms and its quality control for automatic localization in tunnels. Comput Geotech, 2021, 135: 104175 doi: 10.1016/j.compgeo.2021.104175
    [24] Niu W J, Feng X T, Xiao Y X, et al. Identification of potential high-stress hazards in deep-buried hard rock tunnel based on microseismic information: A case study. Bull Eng Geol Environ, 2021, 80: 1265 doi: 10.1007/s10064-020-01973-x
    [25] Hu L, Feng X T, Bi X, et al. Tunnel Rockburst Warning Method Based on Microseismic Information and Deep Convolutional Neural Network: China Patent, 201910560076.2. 2019-10-01

    胡磊, 馮夏庭, 畢鑫, 等. 基于微震信息和深度卷積神經網絡的隧洞巖爆預警方法: 中國專利, 201910560076.2. 2019-10-01
  • 加載中
圖(10) / 表(1)
計量
  • 文章訪問數:  909
  • HTML全文瀏覽量:  297
  • PDF下載量:  54
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-12
  • 網絡出版日期:  2021-11-15
  • 刊出日期:  2022-05-25

目錄

    /

    返回文章
    返回