<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

離子液體改性MWCNTs、MoS2及其復合納米流體的摩擦學性能

童佳威 彭銳濤 郝秀清 趙林峰 陳美良

童佳威, 彭銳濤, 郝秀清, 趙林峰, 陳美良. 離子液體改性MWCNTs、MoS2及其復合納米流體的摩擦學性能[J]. 工程科學學報, 2023, 45(2): 286-294. doi: 10.13374/j.issn2095-9389.2021.08.05.004
引用本文: 童佳威, 彭銳濤, 郝秀清, 趙林峰, 陳美良. 離子液體改性MWCNTs、MoS2及其復合納米流體的摩擦學性能[J]. 工程科學學報, 2023, 45(2): 286-294. doi: 10.13374/j.issn2095-9389.2021.08.05.004
TONG Jia-wei, PENG Rui-tao, HAO Xiu-qing, ZHAO Lin-feng, CHEN Mei-liang. Tribological properties of ionic liquid modified MWCNTs, MoS2, and their composite nanofluids[J]. Chinese Journal of Engineering, 2023, 45(2): 286-294. doi: 10.13374/j.issn2095-9389.2021.08.05.004
Citation: TONG Jia-wei, PENG Rui-tao, HAO Xiu-qing, ZHAO Lin-feng, CHEN Mei-liang. Tribological properties of ionic liquid modified MWCNTs, MoS2, and their composite nanofluids[J]. Chinese Journal of Engineering, 2023, 45(2): 286-294. doi: 10.13374/j.issn2095-9389.2021.08.05.004

離子液體改性MWCNTs、MoS2及其復合納米流體的摩擦學性能

doi: 10.13374/j.issn2095-9389.2021.08.05.004
基金項目: 國家自然科學基金資助項目(51975504, 51475404); 湖南省研究生創新資助項目(CX20190492); 湖南省杰出青年基金資助項目(2022JJ10045)
詳細信息
    通訊作者:

    E-mail: pengruitao@xtu.edu.cn

  • 中圖分類號: TG174.44

Tribological properties of ionic liquid modified MWCNTs, MoS2, and their composite nanofluids

More Information
  • 摘要: 采用1-乙基-3-甲基咪唑四氟硼酸鹽([EMIm]BF4)離子液體分散多壁碳納米管(MWCNTs)、二硫化鉬(MoS2)于去離子水以得到具有優異摩擦學特性的納米流體。通過拉曼光譜儀、納米粒度電位儀、接觸角測量儀表征其分散與潤濕性,通過導熱系數儀和流變儀測試其熱物性,并通過材料表面性能綜合測試儀進行摩擦實驗。結果表明:經[EMIm]BF4改性而制備的納米流體Zeta電位大幅提高,納米顆粒在空間位阻作用下有效分散于水基液,故保持潤濕性的同時增強了導熱能力,其對高溫合金的潤濕接觸角最小為59.33°,室溫(25 °C)平均黏度最低為1.49 mPa·s,且導熱系數最大為1.02 W·(m·K)–1。納米流體中層狀、管狀幾何結構的MoS2、MWCNTs納米顆粒極大強化了基液的減摩抗磨性能,平均摩擦系數降至0.083,磨痕體積磨損率相比傳統水基冷卻液減小了72.33%。

     

  • 圖  1  復合流體中MWCNTs/MoS2疊層結構示意

    Figure  1.  Schematic diagram of the MWCNTs/MoS2 sandwich structure in a composite fluid

    圖  2  納米顆粒顯微形貌. (a) MoS2; (b) MWCNTs

    Figure  2.  Microscopic morphology of nanoparticles: (a) MoS2; (b) MWCNTs

    圖  3  納米顆粒的XRD譜圖. (a) MWCNTs; (b) MoS2

    Figure  3.  X-ray diffraction spectra of nanoparticles: (a) MWCNTs; (b) MoS2

    圖  4  納米顆粒的拉曼光譜. (a) [EMIm]BF4改性的MWCNTs; (b) [EMIm]BF4改性的MoS2

    Figure  4.  Raman spectra of nanoparticles: (a) [EMIm]BF4 modified MWCNTs; (b) [EMIm]BF4 modified MoS2

    圖  5  納米流體的Zeta電位

    Figure  5.  Zeta potential of nanofluids

    圖  6  不同流體在高溫合金基底表面的接觸角

    Figure  6.  Contact angle of different fluids on the surface of the superalloy substrate

    圖  7  不同流體的熱物性測試結果. (a)黏度; (b)導熱系數

    Figure  7.  Test results of thermophysical properties of different fluids: (a) viscosity; (b) thermal conductivity

    圖  8  摩擦系數曲線與平均摩擦系數分布. (a) 摩擦系數變化曲線; (b) 平均摩擦系數分布

    Figure  8.  Friction coefficient curve and average friction coefficient distribution: (a) variation curve of friction coefficient; (b) average friction coefficient

    圖  9  不同潤滑條件下的基底磨痕形貌及其三維輪廓. (a)H2O; (b) ILs; (c) 傳統水基冷卻液; (d) MoS2納米流體; (e)MWCNTs納米流體; (f) 復合納米流體

    Figure  9.  Wear morphology and its three-dimensional profile under different lubrication conditions: (a)H2O; (b) ILs; (c) conventional coolant; (d) MoS2 nanofluid; (e)MWCNTs nanofluid; (f) composite nanofluid

    圖  10  不同潤滑條件下體積磨損率分布

    Figure  10.  Distribution of the volume wear rate under different lubrication conditions

    表  1  納米顆粒的物理參數

    Table  1.   Physical parameters of nanoparticles

    NanoparticlesSize / nmAspect ratioTap density / (g?cm?3)Purity / %
    MWCNTs30–50 (OD)16.67–66.670.2799.5
    MoS2500.91299.9
    Note: OD is outer diameter.
    下載: 導出CSV

    表  2  ILs的物理參數

    Table  2.   Physical parameters of ILs (25 °C, 0.1 MPa)

    Density / (g?mL?1)Viscosity / (Pa·s)Specific heat capacity / (J?K?1?mol?1)Surface tension / (N?m?1)
    1.2850.0393050.054
    下載: 導出CSV

    表  3  GCr15軸承鋼的主要化學組成(質量分數)

    Table  3.   Main chemical composition of the GCr15 bearing steel %

    ElementCrCMnSiNiCuFe
    Content1.4–1.650.95–1.050.25–0.450.15–0.35≤0.3≤0.25Bal.
    下載: 導出CSV

    表  4  鎳基高溫合金GH4169的主要化學組成(質量分數)

    Table  4.   Main chemical composition of the GH4169 superalloy %

    ElementNiCrNbMoTiAlFe
    Content53.418.85.272.991.020.50Bal.
    下載: 導出CSV

    表  5  納米流體的粒徑分布

    Table  5.   Particle size distribution in the nanofluid nm

    NanofluidRange of particle sizeAverage particle size
    MWCNTs890.1–1203.2923.3
    MoS246.5–531.4427.1
    Composite141.8–1055.4447.8
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Ding Z S, Sun G X, Guo M X, et al. Effect of phase transition on micro-grinding-induced residual stress. J Mater Process Technol, 2020, 281: 116647 doi: 10.1016/j.jmatprotec.2020.116647
    [2] Singh H, Sharma V S, Singh S, et al. Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4V-ELI. J Manuf Process, 2019, 39: 241 doi: 10.1016/j.jmapro.2019.02.004
    [3] Qureshi M Z A, Bilal S, Chu Y M, et al. Physical impact of nano-layer on nano-fluid flow due to dispersion of magnetized carbon nano-materials through an absorbent channel with thermal analysis. J Mol Liq, 2021, 325: 115211 doi: 10.1016/j.molliq.2020.115211
    [4] Huang Y Y, Li G H, Zhao B, et al. Preparation and energy storage properties of V2O5/MXene nanocomposites. Chin J Eng, 2020, 42(8): 1018

    黃瑩瑩, 李庚輝, 趙博, 等. V2O5/MXene納米復合材料制備及儲能性能. 工程科學學報, 2020, 42(8):1018
    [5] Saad I, Maalej S, Zaghdoudi M C. Electrohydrodynamic effects on a nanofluid-filled flat heat pipe. Therm Sci Eng Prog, 2020, 16: 100426 doi: 10.1016/j.tsep.2019.100426
    [6] Khatai S, Kumar R, Sahoo A K, et al. Metal-oxide based nanofluid application in turning and grinding processes: A comprehensive review. Mater Today Proc, 2020, 26: 1707 doi: 10.1016/j.matpr.2020.02.360
    [7] Fukushima T, Kosaka A, Ishimura Y, et al. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 2003, 300(5628): 2072 doi: 10.1126/science.1082289
    [8] Pan W X, Zhang D J, Sun H, et al. Theoretical study of the interaction mechanism between single-walled carbon nanotubes and imidazolium-based ionic liquids. Sci Sin (Chimica), 2011, 41(1): 51 doi: 10.1360/032010-22

    潘文筱, 張冬菊, 孫慧, 等. 碳納米管與咪唑類離子液體相互作用機制的理論研究. 中國科學:化學, 2011, 41(1):51 doi: 10.1360/032010-22
    [9] Maiyelvaganan K R, Kamalakannan S, Prakash M. Adsorption of ionic liquids on carbonaceous surfaces: The effect of curvature on selective anion···π and cation···π interactions. Appl Surf Sci, 2019, 495: 143538 doi: 10.1016/j.apsusc.2019.143538
    [10] Wang G S, Wang X Y. Influence of medium-low concentration of ionic liquid[bmim][BF4]on critical micellization concentration and micelle structures. Chemistry, 2017, 80(8): 777

    王冠石, 王小永. 添加中低濃度離子液體[bmim][BF4]對吐溫-20臨界膠束濃度和膠束結構的影響. 化學通報, 2017, 80(8):777
    [11] Che Q L, Li H, Zhang L G, et al. Role of carbon nanotubes on growth of a nanostructured double-deck tribofilm yielding excellent self-lubrication performance. Carbon, 2020, 161: 445 doi: 10.1016/j.carbon.2020.01.091
    [12] Junankar A A, Parate S R, Dethe P K, et al. A Review: Enhancement of turning process performance by effective utilization of hybrid nanofluid and MQL. Mater Today Proc, 2021, 38: 44 doi: 10.1016/j.matpr.2020.05.603
    [13] Peng R T, Tong J W, Zhao L F, et al. Molecular dynamics study on the adsorption synergy of MWCNTs/MoS2 nanofluids and its influence of internal-cooling grinding surface integrity. Appl Surf Sci, 2021, 563: 150312 doi: 10.1016/j.apsusc.2021.150312
    [14] Deng L F, Peng H Y, Qin Y K, et al. Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance. J Mater Eng, 2017, 45(4): 121

    鄧凌峰, 彭輝艷, 覃昱焜, 等. 碳納米管與石墨烯協同改性天然石墨及其電化學性能. 材料工程, 2017, 45(4):121
    [15] Li K, Liu Q F, Cheng H F, et al. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM. Spectrochimica Acta A Mol Biomol Spectrosc, 2021, 249: 119286 doi: 10.1016/j.saa.2020.119286
    [16] Shi S C, Wu J Y, Huang T F. Raman, FTIR, and XRD study of MoS2 enhanced hydroxypropyl methylcellulose green lubricant. Opt Quantum Electron, 2016, 48(10): 1
    [17] Patil S S, Koinkar P M, Dhole S D, et al. Influence of high-energy electron irradiation on field emission properties of multi-walled carbon nanotubes (MWCNTs) films. Phys B Condens Matter, 2011, 406(9): 1809 doi: 10.1016/j.physb.2011.02.033
    [18] Najmaei S, Liu Z, Ajayan P M, et al. Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl Phys Lett, 2012, 100(1): 013106 doi: 10.1063/1.3673907
    [19] Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: Evolution of raman scattering. Adv Funct Mater, 2012, 22(7): 1385 doi: 10.1002/adfm.201102111
    [20] Hou J J, Sui H, Du J Z, et al. Synergistic effect of silica nanofluid and biosurfactant on bitumen recovery from unconventional oil. J Dispers Sci Technol, 2020: 1
    [21] Sun H J, Chen J J, Huang Z X, et al. Selective hydrogenation of benzene to cyclohexene over the nano-sized Ru–Zn catalyst modified by Arabic gum. Chin J Inorg Chem, 2016, 32(2): 202

    孫海杰, 陳建軍, 黃振旭, 等. 阿拉伯樹膠修飾的納米Ru–Zn催化劑上苯選擇加氫制環己烯. 無機化學學報, 2016, 32(2):202
    [22] El?i?ek H, Güzel B. Effect of shear-thinning behavior on flow regimes in Taylor-Couette flows. J Non Newton Fluid Mech, 2020, 279: 104277 doi: 10.1016/j.jnnfm.2020.104277
    [23] Zhu Y F, Zamani M, Xu G Y, et al. A comprehensive experimental investigation of dynamic viscosity of MWCNT–WO3/water–ethylene glycol antifreeze hybrid nanofluid. J Mol Liq, 2021, 333: 115986 doi: 10.1016/j.molliq.2021.115986
    [24] Vadasz P. Heat conduction in nanofluid suspensions. J Heat Transf, 2006, 128(5): 465 doi: 10.1115/1.2175149
    [25] Xie G X, Luo J B, Guo D, et al. Film forming characteristics of common ionic liquid lubricants. J Mech Eng, 2011, 47(11): 82 doi: 10.3901/JME.2011.11.082

    解國新, 雒建斌, 郭丹, 等. 普通離子液體潤滑劑的潤滑成膜性能研究. 機械工程學報, 2011, 47(11):82 doi: 10.3901/JME.2011.11.082
    [26] Han X, Thrush S J, Zhang Z P, et al. Tribological characterization of ZnO nanofluids as fastener lubricants. Wear, 2021, 468-469: 203592 doi: 10.1016/j.wear.2020.203592
    [27] Liu W M, Xue Q J, Zhou J F, et al. Antiwear properties of nanoparticles and application study of nanoparticles as additives in the wear-repairing agent. China Surf Eng, 2001, 14(3): 25

    劉維民, 薛群基, 周靜芳, 等. 納米顆粒的抗磨作用及作為磨損修復添加劑的應用研究. 中國表面工程, 2001, 14(3):25
    [28] Upadhyay R K, Kumar A. Boundary lubrication properties and contact mechanism of carbon/MoS2 based nanolubricants under steel/steel contact. Colloid Interface Sci Commun, 2019, 31: 100186 doi: 10.1016/j.colcom.2019.100186
    [29] Wang X L, Xu B S, Xu Y, et al. Study on friction and wear behavior and mechanism of nano-Cu additive in lubrication oils. Tribology, 2007, 27(3): 235

    王曉麗, 徐濱士, 許一, 等. 納米銅潤滑油添加劑的摩擦磨損特性及其機理研究. 摩擦學學報, 2007, 27(3):235
  • 加載中
圖(10) / 表(5)
計量
  • 文章訪問數:  671
  • HTML全文瀏覽量:  239
  • PDF下載量:  61
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-05
  • 網絡出版日期:  2022-02-10
  • 刊出日期:  2023-02-01

目錄

    /

    返回文章
    返回