<span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
<span id="fpn9h"><noframes id="fpn9h">
<th id="fpn9h"></th>
<strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
<th id="fpn9h"><noframes id="fpn9h">
<span id="fpn9h"><video id="fpn9h"></video></span>
<ruby id="fpn9h"></ruby>
<strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鐵酸鋅碳熱還原動力學及反應機理

李洋 張建良 袁驤 劉征建 李飛 鄭安陽 李占國

李洋, 張建良, 袁驤, 劉征建, 李飛, 鄭安陽, 李占國. 鐵酸鋅碳熱還原動力學及反應機理[J]. 工程科學學報, 2023, 45(1): 82-90. doi: 10.13374/j.issn2095-9389.2021.08.05.003
引用本文: 李洋, 張建良, 袁驤, 劉征建, 李飛, 鄭安陽, 李占國. 鐵酸鋅碳熱還原動力學及反應機理[J]. 工程科學學報, 2023, 45(1): 82-90. doi: 10.13374/j.issn2095-9389.2021.08.05.003
LI Yang, ZHANG Jian-liang, YUAN Xiang, LIU Zheng-jian, LI Fei, ZHENG An-yang, LI Zhan-guo. Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite[J]. Chinese Journal of Engineering, 2023, 45(1): 82-90. doi: 10.13374/j.issn2095-9389.2021.08.05.003
Citation: LI Yang, ZHANG Jian-liang, YUAN Xiang, LIU Zheng-jian, LI Fei, ZHENG An-yang, LI Zhan-guo. Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite[J]. Chinese Journal of Engineering, 2023, 45(1): 82-90. doi: 10.13374/j.issn2095-9389.2021.08.05.003

鐵酸鋅碳熱還原動力學及反應機理

doi: 10.13374/j.issn2095-9389.2021.08.05.003
基金項目: 中央高校基金科研業務費資助項目(06500170);廣東省基礎與應用基礎研究基金聯合區域基金青年基金資助項目 (2020A1515111008)
詳細信息
    通訊作者:

    E-mail: liuzhengjian@ustb.edu.cn

  • 中圖分類號: TF01

Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite

More Information
  • 摘要: 對鐵酸鋅非等溫碳熱還原反應動力學及其還原反應機理進行了研究。通過不同溫度條件下還原后的鐵酸鋅團塊物相分析(XRD)對其碳熱還原的物相轉變過程進行了解析,950 ℃時出現FeO0.85·xZnO無定型物質,此時Fe3+被還原成Fe2+。探討了鐵酸鋅碳熱還原過程轉化率與轉化速率的關系,該還原過程可以劃分為三個階段,第二階段的轉化率變化最大(0.085~0.813)。最后,通過等轉化率法和主曲線擬合法對不同升溫速率條件下鐵酸鋅碳熱還原第二階段的動力學進行了分析,可以得出第二階段的平均活化能為362.16 kJ·mol–1,且該階段活化能為331.01~490.04 kJ·mol–1,變化較大,說明這一階段發生的反應較為復雜,且各反應之間的活化能差異明顯,二級化學反應是這一階段的主要控速環節,并確定了第二階段的主要控速方程。

     

  • 圖  1  不同溫度條件下鐵酸鋅碳熱還原后的XRD結果

    Figure  1.  XRD analysis result of the products of zinc ferrite carbothermal reduction at different temperatures

    圖  2  無煙煤還原ZnFe2O4時轉化率變化曲線

    Figure  2.  Conversion ratio curve of ZnFe2O4 reduced by anthracite

    圖  3  不同升溫速率下鐵酸鋅還原轉化率與DTG(Derivative thermogravimetry)的關系

    Figure  3.  Relationship between conversion rate of the zinc ferrite and DTG at different heating rates

    圖  4  不同升溫速率下鐵酸鋅還原轉化率與DDTG關系

    Figure  4.  Relationship between conversion rate of the zinc ferrite and DDTG at different heating rates

    圖  5  各階段相對轉化率與DTG關系.(a)第一階段;(b)第二階段;(c) 第三階段

    Figure  5.  Relationship between relative conversion rate and DTG in different reaction stages: (a) first stage; (b) second stage; (c) third stage

    圖  6  1/T與lnt之間的線性關系

    Figure  6.  Relationship between 1/T and lnt

    圖  7  不同轉化率時活化能與轉化率的關系

    Figure  7.  Relationship between activation energy and conversion rate

    圖  8  不同升溫速率時y(α)′與轉化率之間的關系曲線

    Figure  8.  Relationship between y(α)′ and conversion rate at different heating rates

    圖  9  鐵酸鋅碳熱還原反應各階段劃分及其化學反應示意圖

    Figure  9.  Schematic diagram of the stages and chemical reactions of the carbothermal reduction of zinc ferrite

    表  1  無煙煤還原鐵酸鋅反應階段劃分

    Table  1.   Reaction stages of zinc ferrite reduced by anthracite

    Heating rate /

    (℃·min–1)
    First stage Second stage Third stage
    αTemperature / ℃αTemperature / ℃αTemperature / ℃
    50–0.089< 923.68 0.089–0.842923.68–1100.54 0.842–1> 1100.54
    100–0.089< 932.980.089–0.832932.98–1132.260.832–1> 1132.26
    150–0.080< 945.660.080–0.801945.66–1135.510.801–1> 1135.51
    200–0.081< 952.390.081–0.778952.39–1138.360.778–1> 1138.36
    Average0–0.085< 938.680.085–0.813938.68–1126.670.813–1> 1126.67
    下載: 導出CSV

    表  2  常見的還原反應機理函數[2224]

    Table  2.   Common mechanism functions in the reduction reaction[22–24]

    MechanismCodeDifferential form, f(α)Integral form, G(α)
    Chemical reactionn = 1F1(1?α)?ln(1?α)
    n = 2F2(1?α)2(1?α)–1?1
    n = 3F3(1?α)3[(1?α)–1?1]/2
    DiffusionThe two-dimensional diffusion controlD2[?ln(1?α)]–1α+(1?α)ln(1?α)
    The three-dimensional diffusion control (Jander function)D31.5(1?α)2/3[1?(1?α)1/3]–1[1?(1?α)1/3]2
    The three-dimensional diffusion control
    (Ginstling–Brounshten function)
    D41.5[(1?α)1/3?1]–1(1?2α/3) ?(1?α)2/3
    Random nucleation and nuclei growthTwo dimensionA22(1?α)[?ln(1?α)]1/2[?ln(1?α)]1/2
    Three dimensionA33(1?$\alpha $)[?ln(1?$\alpha $)]2/3[?ln(1?$\alpha $)]1/3
    Exponential nucleationPower series law, n = 3/2P23(2/3)α?1/2α3/2
    Power series law, n = 1/2P22α1/2α1/2
    Power series law, n = 1/3P33$\alpha $2/3α1/3
    Power series law, n = 1/4P44α3/4α1/4
    Phase boundary reactionCylindrical symmetryR22(1?α)1/21? (1?α)1/2
    Spherical symmetryR33(1?α)2/31?(1?α)1/3
    下載: 導出CSV

    表  3  不同升溫速率條件下各轉化率對應的溫度

    Table  3.   Reaction temperature corresponding to different conversion rates at different heating rates ℃

    α
    Heating rate / (℃·min–1)
    5101520
    0.10929.95940.73955.46961.66
    0.15949.93966.20981.88990.89
    0.20962.99981.85997.961007.57
    0.25973.01993.591010.121020.07
    0.30981.441003.431020.071030.30
    0.35988.781011.771028.721039.35
    0.40995.451019.211036.921047.79
    0.451001.871026.421044.751056.00
    0.501008.791033.851052.551064.28
    0.551016.651042.111061.121072.96
    0.601026.251051.841071.161083.13
    0.651037.791064.361083.551095.31
    0.701051.731079.241098.201109.86
    0.751069.331096.751114.681127.40
    0.801090.041116.931135.031146.83
    下載: 導出CSV

    表  4  不同轉化率時的活化能及第二階段平均活化能

    Table  4.   Activation energy at different conversion rates and average activation energy of the second stage

    αActivation energy / (kJ·mol–1)R2Average activation energy / (kJ·mol–1)
    0.10490.040.9668362.16
    0.15405.920.9879
    0.20383.160.9935
    0.25369.520.9958
    0.30361.420.9974
    0.35353.630.9980
    0.40344.680.9978
    0.45336.490.9978
    0.50332.060.9978
    0.55331.010.9978
    0.60332.450.9975
    0.65334.620.9985
    0.70338.480.9992
    0.75350.610.9996
    0.80368.300.9995
    下載: 導出CSV
    <span id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    <span id="fpn9h"><noframes id="fpn9h">
    <th id="fpn9h"></th>
    <strike id="fpn9h"><noframes id="fpn9h"><strike id="fpn9h"></strike>
    <th id="fpn9h"><noframes id="fpn9h">
    <span id="fpn9h"><video id="fpn9h"></video></span>
    <ruby id="fpn9h"></ruby>
    <strike id="fpn9h"><noframes id="fpn9h"><span id="fpn9h"></span>
    www.77susu.com
  • [1] Tian W, Peng B, Wang S, et al. Research progress of treatment technologies for Zn-containing electric arc furnaces dust. Environ Eng, 2019, 37(2): 144

    田瑋, 彭犇, 王晟, 等. 含鋅電爐粉塵處理技術的研究進展. 環境工程, 2019, 37(2):144
    [2] Zhang J Y, Cheng X, Song T F, et al. Analysis and forecast of the development of China's iron and steel industry. Yejin Jingji Yu Guanli, 2021(4): 19

    張金元, 程欣, 宋騰飛, 等. 我國鋼鐵行業發展狀況分析及趨勢預測. 冶金經濟與管理, 2021(4):19
    [3] Wang F, Mao R, Mao S D, et al. Analysis of self-reduction process of cold-bonded briquettes made from zinc-bearing dust at high temperature. J Iron Steel Res, 2020, 32(7): 626

    王飛, 毛瑞, 茅沈棟, 等. 含鋅粉塵冷固結團塊高溫自還原過程分析. 鋼鐵研究學報, 2020, 32(7):626
    [4] Zhang L Q. Analysis of Chinese ten billion tons of scrap steel resource supply under the dual-carbon background. China Metals Digest, 2021, 35(4): 7

    張龍強. 雙碳背景下百億噸鋼鐵積蓄的廢鋼資源供給分析. 中國冶金文摘, 2021, 35(4):7
    [5] Tan Y J, Guo Y F, Jiang T, et al. Treatment technology and development of zinc electric arc furnace dust. Multipurp Util Miner Resour, 2017(3): 44

    譚宇佳, 郭宇峰, 姜濤, 等. 含鋅電爐粉塵處理工藝現狀及發展. 礦產綜合利用, 2017(3):44
    [6] Al-Harahsheh M, Aljarrah M, Rummanah F, et al. Leaching of valuable metals from electric arc furnace dust—Tetrabromobisphenol A pyrolysis residues. J Anal Appl Pyrolysis, 2017, 125: 50 doi: 10.1016/j.jaap.2017.04.019
    [7] Lanzerstorfer C. Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling. J Clean Prod, 2018, 174: 1 doi: 10.1016/j.jclepro.2017.10.312
    [8] Liu L, Zhao Q, Feng X F. Study on separation of zinc and iron from dust ash containing zinc. J Iron Steel Res, 2020, 32(8): 714

    劉琳, 趙強, 馮曉峰. 含鋅除塵灰鋅鐵分離研究. 鋼鐵研究學報, 2020, 32(8):714
    [9] Leclerc N, Meux E, Lecuire J M. Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy, 2003, 70(1-3): 175 doi: 10.1016/S0304-386X(03)00079-3
    [10] Yu G, Peng N, Zhou L, et al. Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues. Trans Nonferrous Met Soc China, 2015, 25(8): 2744 doi: 10.1016/S1003-6326(15)63899-7
    [11] Xu J F, Yang Y, Guo H R, et al. Selective decomposition process of zinc ferrite in CO reducing atmosphere. Min Metall Eng, 2019, 39(1): 86 doi: 10.3969/j.issn.0253-6099.2019.01.022

    許繼芳, 楊瑩, 郭恒睿, 等. CO還原氣氛下鐵酸鋅選擇性分解過程研究. 礦冶工程, 2019, 39(1):86 doi: 10.3969/j.issn.0253-6099.2019.01.022
    [12] Wang C, Guo Y F, Wang S, et al. Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting. Int J Miner Metall Mater, 2020, 27(1): 26 doi: 10.1007/s12613-019-1858-x
    [13] Tong L F, Hayes P. Mechanisms of the reduction of zinc ferrites in H2/N2 gas mixtures. Miner Process Extr Metall Rev, 2006, 28(2): 127 doi: 10.1080/08827500601012878
    [14] Tong L F. Reduction mechanisms and behaviour of zinc ferrite—Part 1: Pure ZnFe2O4. Miner Process Extr Metall, 2001, 110(1): 14 doi: 10.1179/mpm.2001.110.1.14
    [15] Hu X J, Liu J B, Guo P M, et al. Thermodynamic analysis of the reduction of zinc ferrite with CO–CO2. Chin J Eng, 2015, 37(4): 429

    胡曉軍, 劉俊寶, 郭培民, 等. 鐵酸鋅氣體還原的熱力學分析. 工程科學學報, 2015, 37(4):429
    [16] Junca E, Oliveira J R, Restivo T A G, et al. Synthetic zinc ferrite reduction by means of mixtures containing hydrogen and carbon monoxide. J Therm Anal Calorim, 2016, 123(1): 631 doi: 10.1007/s10973-015-4973-6
    [17] Chen Y J, Wang Y Y, Peng N, et al. Isothermal reduction kinetics of zinc calcine under carbon monoxide. Trans Nonferrous Met Soc China, 2020, 30(8): 2274 doi: 10.1016/S1003-6326(20)65378-X
    [18] Wu G T, Liu W, Han J W, et al. Selective decomposition behavior of zinc ferrite by reduction and oxidation. Min Metall Eng, 2021, 41(1): 80

    鄔桂婷, 劉維, 韓俊偉, 等. 鐵酸鋅還原–氧化選擇性分解行為研究. 礦冶工程, 2021, 41(1):80
    [19] Wang X, Yang D J, Ju S H, et al. Thermodynamics and kinetics of carbothermal reduction of zinc ferrite by microwave heating. Trans Nonferrous Met Soc China, 2013, 23(12): 3808 doi: 10.1016/S1003-6326(13)62933-7
    [20] Wang X, Deng Y X, Xu J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon. Multipurp Util Miner Resour, 2020(2): 167 doi: 10.3969/j.issn.1000-6532.2020.02.030

    汪鑫, 鄧寅祥, 許繼芳, 等. 鐵酸鋅配碳選擇性還原的熱力學分析和試驗研究. 礦產綜合利用, 2020(2):167 doi: 10.3969/j.issn.1000-6532.2020.02.030
    [21] Li Y, Zhang J L, Yuan X, et al. Basic analysis on recovery and utilization of zinc in EAF dust. China Metall, 2018, 28(11): 16 doi: 10.13228/j.boyuan.issn1006-9356.20180123

    李洋, 張建良, 袁驤, 等. 電爐粉塵鋅元素回收利用基礎分析. 中國冶金, 2018, 28(11):16 doi: 10.13228/j.boyuan.issn1006-9356.20180123
    [22] Vlaev L T, Markovska I G, Lyubchev L A. Non-isothermal kinetics of pyrolysis of rice husk. Thermochimica Acta, 2003, 406(1-2): 1 doi: 10.1016/S0040-6031(03)00222-3
    [23] Xu R S, Zhang J L, Wang G W, et al. Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process. J Therm Anal Calorim, 2016, 123(1): 773 doi: 10.1007/s10973-015-4972-7
    [24] Kou M Y, Zuo H B, Ning X J, et al. Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal. Energy, 2019, 188: 116030 doi: 10.1016/j.energy.2019.116030
    [25] Ren S, Zhang J L. Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method. Thermochimica Acta, 2013, 561: 36 doi: 10.1016/j.tca.2013.03.040
    [26] Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochimica Acta, 2000, 355(1-2): 239 doi: 10.1016/S0040-6031(00)00449-4
  • 加載中
圖(9) / 表(4)
計量
  • 文章訪問數:  373
  • HTML全文瀏覽量:  247
  • PDF下載量:  65
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-08-05
  • 網絡出版日期:  2021-09-22
  • 刊出日期:  2023-01-01

目錄

    /

    返回文章
    返回