Kinetics and reduction mechanism of non-isothermal analysis carbothermal reduction of zinc ferrite
-
摘要: 對鐵酸鋅非等溫碳熱還原反應動力學及其還原反應機理進行了研究。通過不同溫度條件下還原后的鐵酸鋅團塊物相分析(XRD)對其碳熱還原的物相轉變過程進行了解析,950 ℃時出現FeO0.85·xZnO無定型物質,此時Fe3+被還原成Fe2+。探討了鐵酸鋅碳熱還原過程轉化率與轉化速率的關系,該還原過程可以劃分為三個階段,第二階段的轉化率變化最大(0.085~0.813)。最后,通過等轉化率法和主曲線擬合法對不同升溫速率條件下鐵酸鋅碳熱還原第二階段的動力學進行了分析,可以得出第二階段的平均活化能為362.16 kJ·mol–1,且該階段活化能為331.01~490.04 kJ·mol–1,變化較大,說明這一階段發生的反應較為復雜,且各反應之間的活化能差異明顯,二級化學反應是這一階段的主要控速環節,并確定了第二階段的主要控速方程。Abstract: The amount of zinc-containing EAF dust has increased due to the increased proportion of galvanized steel scrap used in the electric arc furnace (EAF) steelmaking process. If the zinc in the EAF dust is not recycled, it will not only lead to a waste of valuable metal resources but also results in environmental pollution. Zinc is mainly present in the EAF dust in the form of zinc ferrite (ZnFe2O4). Zinc ferrite is a kind of spinel mineral that exhibits a crystal lattice of greater stability, which increases the difficulty of recycling valuable elements such as zinc and iron from zinc-containing EAF dust. To further clarify the carbothermic reduction process of zinc ferrite, this paper studies the kinetics of the non-isothermal carbothermal reduction of zinc ferrite and its reduction reaction mechanism. The phase transition process of the zinc ferrite carbothermal reduction reaction was analyzed via the XRD results of the reduced zinc ferrite. FeO0.85·xZnO was found at 950 °C when Fe3+ was reduced to Fe2+. The relationship between the conversion and conversion rate of the zinc ferrite carbothermal reduction process is discussed. The reduction process can be divided into three stages, and the conversion of the second stage changes greatly (0.085–0.813). Finally, the kinetics of the second stage of the carbothermic reduction of the zinc ferrite at different heating rates was evaluated through the isoconversional method and the master curve fitting method. The activation energy of the second stage is between 331.01–490.04 kJ·mol?1, and the average activation energy is 362.16 kJ·mol?1. The large change in the activation energy in the second stage indicates that the reactions in this stage are more complicated, and there are obvious differences in the activation energy between the reactions. The secondary chemical reaction is the main rate-controlling link in the second stage, and the kinetics equation of the second stage is determined.
-
Key words:
- zinc-containing dust /
- zinc ferrite /
- carbothermal reduction /
- kinetics /
- activation energy
-
表 1 無煙煤還原鐵酸鋅反應階段劃分
Table 1. Reaction stages of zinc ferrite reduced by anthracite
Heating rate /
(℃·min–1)First stage Second stage Third stage α Temperature / ℃ α Temperature / ℃ α Temperature / ℃ 5 0–0.089 < 923.68 0.089–0.842 923.68–1100.54 0.842–1 > 1100.54 10 0–0.089 < 932.98 0.089–0.832 932.98–1132.26 0.832–1 > 1132.26 15 0–0.080 < 945.66 0.080–0.801 945.66–1135.51 0.801–1 > 1135.51 20 0–0.081 < 952.39 0.081–0.778 952.39–1138.36 0.778–1 > 1138.36 Average 0–0.085 < 938.68 0.085–0.813 938.68–1126.67 0.813–1 > 1126.67 Mechanism Code Differential form, f(α) Integral form, G(α) Chemical reaction n = 1 F1 (1?α) ?ln(1?α) n = 2 F2 (1?α)2 (1?α)–1?1 n = 3 F3 (1?α)3 [(1?α)–1?1]/2 Diffusion The two-dimensional diffusion control D2 [?ln(1?α)]–1 α+(1?α)ln(1?α) The three-dimensional diffusion control (Jander function) D3 1.5(1?α)2/3[1?(1?α)1/3]–1 [1?(1?α)1/3]2 The three-dimensional diffusion control
(Ginstling–Brounshten function)D4 1.5[(1?α)1/3?1]–1 (1?2α/3) ?(1?α)2/3 Random nucleation and nuclei growth Two dimension A2 2(1?α)[?ln(1?α)]1/2 [?ln(1?α)]1/2 Three dimension A3 3(1?$\alpha $)[?ln(1?$\alpha $)]2/3 [?ln(1?$\alpha $)]1/3 Exponential nucleation Power series law, n = 3/2 P23 (2/3)α?1/2 α3/2 Power series law, n = 1/2 P2 2α1/2 α1/2 Power series law, n = 1/3 P3 3$\alpha $2/3 α1/3 Power series law, n = 1/4 P4 4α3/4 α1/4 Phase boundary reaction Cylindrical symmetry R2 2(1?α)1/2 1? (1?α)1/2 Spherical symmetry R3 3(1?α)2/3 1?(1?α)1/3 表 3 不同升溫速率條件下各轉化率對應的溫度
Table 3. Reaction temperature corresponding to different conversion rates at different heating rates ℃
α
Heating rate / (℃·min–1)5 10 15 20 0.10 929.95 940.73 955.46 961.66 0.15 949.93 966.20 981.88 990.89 0.20 962.99 981.85 997.96 1007.57 0.25 973.01 993.59 1010.12 1020.07 0.30 981.44 1003.43 1020.07 1030.30 0.35 988.78 1011.77 1028.72 1039.35 0.40 995.45 1019.21 1036.92 1047.79 0.45 1001.87 1026.42 1044.75 1056.00 0.50 1008.79 1033.85 1052.55 1064.28 0.55 1016.65 1042.11 1061.12 1072.96 0.60 1026.25 1051.84 1071.16 1083.13 0.65 1037.79 1064.36 1083.55 1095.31 0.70 1051.73 1079.24 1098.20 1109.86 0.75 1069.33 1096.75 1114.68 1127.40 0.80 1090.04 1116.93 1135.03 1146.83 表 4 不同轉化率時的活化能及第二階段平均活化能
Table 4. Activation energy at different conversion rates and average activation energy of the second stage
α Activation energy / (kJ·mol–1) R2 Average activation energy / (kJ·mol–1) 0.10 490.04 0.9668 362.16 0.15 405.92 0.9879 0.20 383.16 0.9935 0.25 369.52 0.9958 0.30 361.42 0.9974 0.35 353.63 0.9980 0.40 344.68 0.9978 0.45 336.49 0.9978 0.50 332.06 0.9978 0.55 331.01 0.9978 0.60 332.45 0.9975 0.65 334.62 0.9985 0.70 338.48 0.9992 0.75 350.61 0.9996 0.80 368.30 0.9995 www.77susu.com -
參考文獻
[1] Tian W, Peng B, Wang S, et al. Research progress of treatment technologies for Zn-containing electric arc furnaces dust. Environ Eng, 2019, 37(2): 144田瑋, 彭犇, 王晟, 等. 含鋅電爐粉塵處理技術的研究進展. 環境工程, 2019, 37(2):144 [2] Zhang J Y, Cheng X, Song T F, et al. Analysis and forecast of the development of China's iron and steel industry. Yejin Jingji Yu Guanli, 2021(4): 19張金元, 程欣, 宋騰飛, 等. 我國鋼鐵行業發展狀況分析及趨勢預測. 冶金經濟與管理, 2021(4):19 [3] Wang F, Mao R, Mao S D, et al. Analysis of self-reduction process of cold-bonded briquettes made from zinc-bearing dust at high temperature. J Iron Steel Res, 2020, 32(7): 626王飛, 毛瑞, 茅沈棟, 等. 含鋅粉塵冷固結團塊高溫自還原過程分析. 鋼鐵研究學報, 2020, 32(7):626 [4] Zhang L Q. Analysis of Chinese ten billion tons of scrap steel resource supply under the dual-carbon background. China Metals Digest, 2021, 35(4): 7張龍強. 雙碳背景下百億噸鋼鐵積蓄的廢鋼資源供給分析. 中國冶金文摘, 2021, 35(4):7 [5] Tan Y J, Guo Y F, Jiang T, et al. Treatment technology and development of zinc electric arc furnace dust. Multipurp Util Miner Resour, 2017(3): 44譚宇佳, 郭宇峰, 姜濤, 等. 含鋅電爐粉塵處理工藝現狀及發展. 礦產綜合利用, 2017(3):44 [6] Al-Harahsheh M, Aljarrah M, Rummanah F, et al. Leaching of valuable metals from electric arc furnace dust—Tetrabromobisphenol A pyrolysis residues. J Anal Appl Pyrolysis, 2017, 125: 50 doi: 10.1016/j.jaap.2017.04.019 [7] Lanzerstorfer C. Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling. J Clean Prod, 2018, 174: 1 doi: 10.1016/j.jclepro.2017.10.312 [8] Liu L, Zhao Q, Feng X F. Study on separation of zinc and iron from dust ash containing zinc. J Iron Steel Res, 2020, 32(8): 714劉琳, 趙強, 馮曉峰. 含鋅除塵灰鋅鐵分離研究. 鋼鐵研究學報, 2020, 32(8):714 [9] Leclerc N, Meux E, Lecuire J M. Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy, 2003, 70(1-3): 175 doi: 10.1016/S0304-386X(03)00079-3 [10] Yu G, Peng N, Zhou L, et al. Selective reduction process of zinc ferrite and its application in treatment of zinc leaching residues. Trans Nonferrous Met Soc China, 2015, 25(8): 2744 doi: 10.1016/S1003-6326(15)63899-7 [11] Xu J F, Yang Y, Guo H R, et al. Selective decomposition process of zinc ferrite in CO reducing atmosphere. Min Metall Eng, 2019, 39(1): 86 doi: 10.3969/j.issn.0253-6099.2019.01.022許繼芳, 楊瑩, 郭恒睿, 等. CO還原氣氛下鐵酸鋅選擇性分解過程研究. 礦冶工程, 2019, 39(1):86 doi: 10.3969/j.issn.0253-6099.2019.01.022 [12] Wang C, Guo Y F, Wang S, et al. Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting. Int J Miner Metall Mater, 2020, 27(1): 26 doi: 10.1007/s12613-019-1858-x [13] Tong L F, Hayes P. Mechanisms of the reduction of zinc ferrites in H2/N2 gas mixtures. Miner Process Extr Metall Rev, 2006, 28(2): 127 doi: 10.1080/08827500601012878 [14] Tong L F. Reduction mechanisms and behaviour of zinc ferrite—Part 1: Pure ZnFe2O4. Miner Process Extr Metall, 2001, 110(1): 14 doi: 10.1179/mpm.2001.110.1.14 [15] Hu X J, Liu J B, Guo P M, et al. Thermodynamic analysis of the reduction of zinc ferrite with CO–CO2. Chin J Eng, 2015, 37(4): 429胡曉軍, 劉俊寶, 郭培民, 等. 鐵酸鋅氣體還原的熱力學分析. 工程科學學報, 2015, 37(4):429 [16] Junca E, Oliveira J R, Restivo T A G, et al. Synthetic zinc ferrite reduction by means of mixtures containing hydrogen and carbon monoxide. J Therm Anal Calorim, 2016, 123(1): 631 doi: 10.1007/s10973-015-4973-6 [17] Chen Y J, Wang Y Y, Peng N, et al. Isothermal reduction kinetics of zinc calcine under carbon monoxide. Trans Nonferrous Met Soc China, 2020, 30(8): 2274 doi: 10.1016/S1003-6326(20)65378-X [18] Wu G T, Liu W, Han J W, et al. Selective decomposition behavior of zinc ferrite by reduction and oxidation. Min Metall Eng, 2021, 41(1): 80鄔桂婷, 劉維, 韓俊偉, 等. 鐵酸鋅還原–氧化選擇性分解行為研究. 礦冶工程, 2021, 41(1):80 [19] Wang X, Yang D J, Ju S H, et al. Thermodynamics and kinetics of carbothermal reduction of zinc ferrite by microwave heating. Trans Nonferrous Met Soc China, 2013, 23(12): 3808 doi: 10.1016/S1003-6326(13)62933-7 [20] Wang X, Deng Y X, Xu J F, et al. Thermodynamic analysis and experimental study on selective reduction of zinc ferrite with carbon. Multipurp Util Miner Resour, 2020(2): 167 doi: 10.3969/j.issn.1000-6532.2020.02.030汪鑫, 鄧寅祥, 許繼芳, 等. 鐵酸鋅配碳選擇性還原的熱力學分析和試驗研究. 礦產綜合利用, 2020(2):167 doi: 10.3969/j.issn.1000-6532.2020.02.030 [21] Li Y, Zhang J L, Yuan X, et al. Basic analysis on recovery and utilization of zinc in EAF dust. China Metall, 2018, 28(11): 16 doi: 10.13228/j.boyuan.issn1006-9356.20180123李洋, 張建良, 袁驤, 等. 電爐粉塵鋅元素回收利用基礎分析. 中國冶金, 2018, 28(11):16 doi: 10.13228/j.boyuan.issn1006-9356.20180123 [22] Vlaev L T, Markovska I G, Lyubchev L A. Non-isothermal kinetics of pyrolysis of rice husk. Thermochimica Acta, 2003, 406(1-2): 1 doi: 10.1016/S0040-6031(03)00222-3 [23] Xu R S, Zhang J L, Wang G W, et al. Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process. J Therm Anal Calorim, 2016, 123(1): 773 doi: 10.1007/s10973-015-4972-7 [24] Kou M Y, Zuo H B, Ning X J, et al. Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal. Energy, 2019, 188: 116030 doi: 10.1016/j.energy.2019.116030 [25] Ren S, Zhang J L. Thermogravimetric analysis of anthracite and waste plastics by iso-conversional method. Thermochimica Acta, 2013, 561: 36 doi: 10.1016/j.tca.2013.03.040 [26] Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochimica Acta, 2000, 355(1-2): 239 doi: 10.1016/S0040-6031(00)00449-4 -